Prospects for the use of synthetic organoselenium compounds for the correction of metabolic and immune status during vaccination with live attenuated vaccines against especially dangerous infections
https://doi.org/10.29413/ABS.2021-6.3.6
Abstract
This review article analyzes the data on the role of selenium in the regulation of the metabolic and immune status of a macroorganism. The data on endogenous
functional selenium-containing molecules, which include selenocysteine, selenomethionine, and selenoproteins, are considered. The data on the pathologies associated with the deficiency of this microelement, its immunotropic properties and adjuvant effects are presented. The role of selenoproteins in the regulation of redox processes has been shown. The data on the immunotropic activity of compounds containing selenium and the prospects for their use as adjuvants are analyzed. The last section is devoted to the analysis of literature data on the biological properties of synthetic selenium compounds with an activity that mimics the catalytic activity of selenoproteins. The analysis of the data on the functional activity of selenoproteins carried out in this work indicates their key role in the regulation of metabolic and immune processes, as well as in maintaining homeostasis. The information presented in this review on the biological activity and mechanisms of action of new synthetic low-toxic organic compounds of selenium can serve as a basis for the development of nonspecific means of metabolic and immune correction of vaccinal processes caused by both live attenuated vaccines and artificially created ones.
About the Authors
O. V. YurievaRussian Federation
Cand. Sc. (Biol.), Senior Research Officer of Pathophysiological Laboratory
Trilissera st, 78, 664047, Irkutsk region, Irkutsk, Russian Federation
V. I. Dubrovina
Russian Federation
Dr. Sc. (Biol.), Head of Pathophysiological Laboratory
Trilissera st, 78, 664047, Irkutsk region, Irkutsk, Russian Federation
A. B. Pyatidesyatnikova
Russian Federation
Junior Research Officer of Pathophysiological Laboratory
Trilissera st, 78, 664047, Irkutsk region, Irkutsk, Russian Federation
References
1. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013; 4:114. doi: 10.3389/fimmu.2013.00114
2. Afanas’eva GA, Chesnokova NP. On pathogenetic significance of activation of lipid peroxidation in the mechanisms of disturbance of blood rheologic properties in experimental intoxication induced by fraction FII of vaccinal EV strain of Y. pestis. Vestn Ross Akad Med Nauk. 2009; (2):14–8. (In Russ.)
3. Rusetskaya NY, Borodulin VB. Biological activity of organoselenium compounds under intoxication with salts of heavy metals. Biomeditsinskaya сhimiya. 2015; 61 (4): 449–461. doi: 10.18097/PBMC20156104449 (In Russ.)
4. Yurieva OV, Dubrovina VI, Potapov VA, Musalov MV, Starovoitova TP, Ivanova TA et al. The effect of a synthetic organoselenium preparation on the degree of pathomorphological changes in the organs of white mice immunized with tularemia and brucellosis vaccines. Bulletin of Experimental Biology and Medicine. 2019; 168 (7): 76–79. (In Russ.)
5. Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018; 10 (9): 1203. doi: 10.3390/nu10091203
6. Hamid M, Abdulrahim Y, Dandan Liu, Gang Qian, Khan A, Kehe Huang. The Hepatoprotective Effect of Selenium-Enriched Yeast and Gum Arabic Combination on Carbon TetrachlorideInduced Chronic Liver Injury in Rats. J Food Sci. 2018; 83 (2): 525–534. doi: 10.1111/1750–3841.14030
7. Mahmoodpoor A, Hamishehkar H, Shadvar K, Ostadi Z, Sanaie S, Saghaleini SH, et al. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol Invest. 2019; 48 (2): 147–159. doi: 10.1080/08820139.2018.1496098
8. Zhexi Liu, Jianwei Huang, Yijuan Nie, Qazi I H, Yutao Cao, Linli Wang, et al. Selenium Treatment Enhanced Clearance of Salmonella in Chicken Macrophages (HD11). Antioxidants (Basel, Switzerland). 2019; 8 (11): 532. doi:10.3390/antiox8110532
9. Janbakhsh A, Mansouri F, Vaziri S, Sayad B, Afsharian M, et al. The effect of selenium on immunogenicity of influenza vaccine in the elderly: A case-control double-blinded clinical trial. J Kermanshah Univ Med Sci. 2016; 20 (1): e69746. doi: 10.22110/jkums.v20i1.3122
10. Mahdavi M, Mavandadnejad F, Yazdi MH, Faghfuri E, Hashemi H, Homayouni-Oreh S, et al. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J Infect Public Health. 2017; 10 (1): 102–109. doi: 10.1016/j.jiph.2016.02.006
11. Hawkes WC, Kelley DS, Taylor PC. The effects of dietary selenium on the immune system in healthy men. Biol Trace Elem Res. 2001; 81 (3): 189–213. doi: 10.1385/BTER: 81:3:189
12. Yazdi MH, Varastehmoradi B, Faghfuri E, Mavandadnejad F, Mahdavi M, Shahverdi AR. Adjuvant Effect of Biogenic Selenium Nanoparticles Improves the Immune Responses and Survival of Mice Receiving 4T1 Cell Antigens as Vaccine in Breast Cancer Murine Model. J Nanosci Nanotechnol. 2015; 5 (12): 10165–10172. doi: 10.1166/jnn.2015.11692
13. Yong Wang, Xuemei Cui, Lijia Yuan, Maqbool B, Wei Xu, Shanshan He, et al. A Solution with Ginseng Saponins and Selenium as Vaccine Diluent to Increase Th1/Th2 Immune Responses in Mice. J Immunol Res. 2020; ID 2714257. doi: 10.1155/2020/2714257
14. Ma X, Bi S, Wang Y, Chi X, Hu S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult Sci. 2019; 98 (9): 3548–3556. doi: 10.3382/ps/pez207
15. Gabalov KP, Rumina MV, Tarasenko TN, et al. The adjuvant effect of selenium nanoparticles, Triton X-114 detergent micelles, and lecithin liposomes for Escherichia coli antigens. App lBiochem Microbiol. 2017; 53: 587–593. doi: 10.1134/S0003683817050040
16. Zhang Z, Xuejiao Gao, Yongguo Cao, Haichao Jiang, Tiancheng Wang, Xiaojing Song, et al. Selenium Deficiency Facilitates Inflammation Through the Regulation of TLR4 and TLR4-Related Signaling Pathways in the Mice Uterus.Inflammation. 2015; 38 (3): 1347–1356. doi: 10.1007/s10753-014-0106-9
17. Hugo V, Serrаo B, Scortecci JF. Why Selenocysteine Is Unique? Front. Mol. Biosci. 2020; 7 (2): 1–3. doi: 10.3389/fmolb.2020.00002
18. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, et al. Characterization of mammalian selenoproteomes. Science. 2003; 300: 1439–1443
19. Xin Gen Lei, Wen-Hsing Cheng, McClung JP. Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr. 2007; 27: 41–61. doi: 10.1146/annurev.nutr.27.061406.093716
20. Razygraev AV, Matrosova MO, Titovich IA. Significance of glutathione peroxidases in endometrium function: facts, hypotheses, and research perspectives. Journal of obstetrics and women’s diseases. 2017; 66 (2): 104–111. doi: 10.17816/JOWD662104–111. (In Russ.)
21. Carlson BA, Yoo MH, Shrimali RK, Irons R, Gladyshev VN, Hatfield DL, et al. Role of selenium-containing proteins in T-cell and macrophage function. Proc Nutr Soc. 2010; 69 (3): 300–310. doi: 10.1017/S002966511000176X
22. Crosley LK, Méplan C, Nicol F, Rundlöf AK, Arnér ES, Hesketh JE, Arthur JR. Differential regulation of expression of cytosolic and mitochondrial thioredoxin reductase in rat liver and kidney. Arch Biochem Biophys. 2007; 459 (2): 178–88. doi: 10.1016/j.abb.2006.12.029. Epub 2007 Jan 22. PMID: 17291446
23. Lyamina SV, Malyshev IYu. Polarization of Macrophages in the Modern Concept of Formation of the Immune Response. Basic research. 2014; 10: 930–935. (In Russ.)
24. Artykbaeva G. M. The role of type 1 and type 2 deiodinases in thyroid hormone metabolism. Endocrinology problems. 2016; 2: 46–52. doi.org/10.14341/probl201662246–52 (In Russ.)
25. Lee BC, Péterfi Z, Hoffmann FW, Moore RE, Kaya A, Avanesov A, et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell. 2013; 51 (3): 397–404. doi: 10.1016/j.molcel.2013.06.019
26. Xiaoxiang Zheng, Bingyu Ren, Heng Wang, Ruikun Huang, Jun Zhou, Hongmei Liu, et al. Hepatic proteomic analysis of selenoprotein F knockout mice by iTRAQ: An implication for the roles of selenoprotein F in metabolism and diseases. J Proteomics. 2020; 215:103653. doi: 10.1016/j.jprot.2020.103653
27. Yim SH, Everley RA, Schildberg FA, Lee SG, Orsi A, Barbati ZR, et al. Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell Rep. 201823 (5), 1387–1398. doi: 10.1016/j.celrep.2018.04.009
28. Bertz M, Kühn K, Koeberle SC, Müller MF, Hoelzer D, Thies K, et al. Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free RadicBiol Med. 2018; 127: 98–107. doi: 10.1016/j.freeradbiomed.2018.01.010
29. Horibata Y, Elpeleg O, Eran A, Hirabayashi Y, Savitzki D, Tal G, et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J Lipid Res. 2018; 59 (6): 1015–1026. doi: 10.1194/jlr.P081620
30. Marciel MP, Hoffmann PR. Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer. Biol Trace Elem Res. 2019; 192 (1): 60–68. doi: 10.1007/s12011-019-01774-8
31. Hao Jiang, Qian Qian Shi, Li Yuan Ge, Qian Feng Zhuang, Dong Xue, et al. Selenoprotein M stimulates the proliferative and metastatic capacities of renal cell carcinoma through activating the PI3K/AKT/mTOR pathway. Cancer Med. 2019; 8 (10): 4836–4844. doi: 10.1002/cam4.2403
32. Ziyaee F, Shorafa E, Dastsooz H, Habibzadeh P, Nemati H, Saeed A, Silawi M, Farazi Fard MA, Faghihi MA, Dastgheib SA. A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report. BMC Medical Genetics. 2019; 20 (1):13. doi: 10.1186/s12881-018-0743-1. PMID: 30642275
33. Han SJ, Lee BC, Yim SH, Gladyshev VN, Lee SR. Characterization of mammalian selenoprotein o: a redoxactive mitochondrial protein. PLoS One. 2014; 9 (4): e95518. doi: 10.1371/journal.pone.0095518
34. Yu Ss, Du Jl. Selenoprotein S: a therapeutic target for diabetes and macroangiopathy?. Cardiovasc Diabetol (2017). doi: 10.1186/s12933-017-0585-8
35. Pitts MW, Hoffmann PR. Endoplasmic reticulumresident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 2018; 70: 76–86. doi: 10.1016/j.ceca.2017.05.001
36. Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics. 2017; 9 (12): 1703–1734. doi: 10.1039/c7mt00083a
37. Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582: 289–293. doi: 10.1038/s41586-020-2223-y
38. Zmudzinski M, Rut LW, Olech K, Granda J, Giurg M, Grabowska MB, et al. Ebselen derivatives are very potent dual inhibitors of SARS-CoV-2 proteases – PLpro and Mpro in in vitro studies. 2020. (preprint). doi: 10.1101/2020.08.30.273979
39. Poluboyarinov PA, Elistratov DG, Shvets VI. Metabolism and mechanism of toxicity of selenium-containing drugs used to correct the deficiency of the microelement selenium. Fine chemical technologies. 2019; 14 (1): 5–24. doi: 10.32362/2410-6593-2019-14-1-5-24 (In Russ.)
40. Potapov VA, Musalov MV, Musalova MV, Amosova SV. Recent Advances in Organochalcogen Synthesis Based on Reactions of Chalcogen Halides with Alkynes and Alkenes. Current Organic Chemistry. 2016; 20: 136–145
41. Musalov MV, Potapov VA, Musalova MV, Amosova SV. Regioselective synthesis of bis [ (2,3-di-hydro-1-benzofuran-2-yl) methyl] selenide. Journal. Organic chemistry. 2014; 50 (11): 1712–1713 (In Russ.)
42. Yurieva OV, Dubrovina VI. The role of signaling systems of cyclic nucleotides in the regulation of immuno- and pathogenesis. Bulletin of the All-Russian Scientific Center of the Russian Academy of Medical Sciences. 2012; 84 (2): 159–163. (In Russ.)
43. Yurieva OV, Dubrovina VI, Potapov VA, Musalov MV, Starovoitova TP, Ivanova TA, et al. Results of a study of the immunotropic properties of an experimental synthetic organoselenium compound. Bulletin of Experimental Biology and Medicine. 2020; 169 (1): 45–48. (In Russ.)
Review
For citations:
Yurieva O.V., Dubrovina V.I., Pyatidesyatnikova A.B. Prospects for the use of synthetic organoselenium compounds for the correction of metabolic and immune status during vaccination with live attenuated vaccines against especially dangerous infections. Acta Biomedica Scientifica. 2021;6(3):60-69. (In Russ.) https://doi.org/10.29413/ABS.2021-6.3.6