Preview

Acta Biomedica Scientifica

Расширенный поиск

Посттрансляционные модификации белков и их роль в привычном невынашивании беременности: прогнозы и диагностика

https://doi.org/10.29413/ABS.2025-10.5.4

Аннотация

Распространенность привычного невынашивания беременности (ПНБ) у женщин по всему миру составляет от 1 до 5 %. Среди известных причин ПНБ в последние годы изучается роль посттрансляционных модификаций белков (ПТМБ) – превращения структуры белков, завершающие формирование их молекулы или участвующие в регуляции функций этой молекулы, и катализируемые специфическими ферментами.
Цель. Оценить роль ПТМБ в патогенезе ПНБ, а также определить потенциальные биомаркеры и терапевтические мишени ПНБ.
Материал. Проведен поиск публикаций по ключевым словам в электронных базах данных PubMed/MEDLINE и Google Scholar, опубликованных до декабря 2024 г.
Результаты. ПТМБ играют важную роль в процессах инвазии трофобласта, децидуализации эндометрия и имплантации эмбриона, что делает их значимыми для понимания нарушений репродуктивной функции. Использование масс-спектрометрии для исследования ПТМБ открывает новые возможности для диагностики и прогноза ПНБ. Эпигенетическая терапия ПНБ демонстрирует эффективность и меньшую вероятность побочных эффектов по сравнению с традиционными методами. Несмотря на значимые перспективы, исследования в этой области сопровождаются трудностями, связанными с неоднородностью терминологии и этическими вопросами.
Заключение. ПТМБ в контексте ПНБ может способствовать улучшению диагностических и терапевтических стратегий в репродуктивной медицине. Необходимы дальнейшие разработки методологий для изучения ПТМБ.

Об авторах

А. М. Зиганшин
ФГБОУ ВО «Башкирский государственный медицинский университет»
Россия

Зиганшин Айдар Миндиярович – доктор медицинских наук, профессор кафедры акушерства и гинекологии № 2 

450008, г. Уфа, ул. Ленина, д. 3, Россия



Г. Б. Дикке
ЧОУ ДПО «Академия медицинского образования имени Ф.И. Иноземцева»
Россия

Дикке Галина Борисовна – доктор медицинских наук, профессор кафедры акушерства и гинекологии с курсом репродуктивной медицины 

190013, г. Санкт-Петербург, ул. Московский пр-кт, д. 22 литер М, Россия



А. М. Мусина
ФГБОУ ВО «Башкирский государственный медицинский университет»
Россия

Мусина Алия Маратовна – студентка 5 курса лечебного факультета 

450008, г. Уфа, ул. Ленина, д. 3, Россия



Р. Р. Баянова
ФГБОУ ВО «Башкирский государственный медицинский университет»
Россия

Баянова Регина Радиковна – студентка 5 курса лечебного факультета 

450008, г. Уфа, ул. Ленина, д. 3, Россия



А. Л. Фролов
ГБУЗ МЗ РБ «Республиканский клинический перинатальный центр»
Россия

Фролов Алексей Леонидович – кандидат медицинских наук, заслуженный врач Российской Федерации, заведующий операционным блоком № 2 

450106, г. Уфа, ул. Батырская, д. 31, Россия 



Список литературы

1. Rasmark Roepke E, Matthiesen L, Rylance R, Christiansen OB. Is the incidence of recurrent pregnancy loss increasing? A retrospective register-based study in Sweden. Acta Obstet Gynecol Scand. 2017; 96(11): 1365-1372. doi: 10.1111/aogs.13210

2. Тетруашвили Н.К. Привычный выкидыш. Акушерство и гинекология: Новости. Мнения. Обучения. 2017; 4(18): 70-87. doi: 10.1038/s41572-020-00228-z

3. Малышкина А.И., Назарова А.О., Батрак Н.В., и др. Медико-социальная характеристика пациенток с привычным невынашиванием беременности. Российский вестник акушера-гинеколога. 2014; 14(6): 4348.

4. Погорелова Т.Н., Гунько В.О., Никашина А.А., и др. Посттрансляционная модификация и дифференциальная экспрессия белков при плацентарной недостаточности. Проблемы репродукции. 2016; 22(6): 115119. doi: 10.17116/repro2016226115-119

5. Pieroni L, Iavarone F, Olianas A, et al. Enrichments of post-translational modifications in proteomic studies. J Sep Sci. 2020; 43(1): 313-336. doi: 10.1002/jssc.201900804

6. Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022; 86: 101097. doi: 10.1016/j.mam.2022.101097

7. Tur-Torres MH, Garrido-Gimenez C, Alijotas-Reig J. Genetics of recurrent miscarriage and fetal loss. Best Pract Res Clin Obstet Gynaecol. 2017; 42: 11-25. doi: 10.1016/j.bpobgyn.2017.03.007

8. Eichler J. Protein glycosylation. Curr Biol. 2019; 29(7): R229-R231. doi: 10.1016/j.cub.2019.01.003

9. de Lima Castro M, Dos Passos RR Jr, Justina VD, et al. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta. 2023; 141: 43-50. doi: 10.1016/j.placenta.2023.04.018

10. Keembiyehetty C, Love DC, Harwood KR, et al. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem. 2015; 290(11): 7097-113. doi: 10.1074/jbc.M114.617779

11. Пестрикова Т.Ю., Юрасова Е.А., Ткаченко В.А. Плацентарная недостаточность как базовая патология осложнений и исходов гестационного периода. Российский вестник акушера-гинеколога. 2020; 20(1): 515. doi: 10.17116/rosakush2020200115

12. Yang YR, Jang HJ, Lee YH, et al. O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α. Placenta. 2015; 36(10): 1063-8. doi: 10.1016/j.placenta.2015.08.001

13. Ruane PT, Tan CMJ, Adlam DJ, et al. Protein O-GlcNAcylation promotes trophoblast differentiation at implantation. Cells. 2020; 9(10): 2246. doi: 10.3390/cells9102246

14. Liu J, Shao X, Qin W, et al. Quantitative chemoproteomics reveals O-GlcNAcylation of cystathionine γ-lyase (CSE) represses trophoblast syncytialization. Cell Chem Biol. 2021; 28(6): 788-801.e5. doi: 10.1016/j.chembiol.2021.01.024

15. Lima VV, Dela Justina V, Dos Passos RR Jr, et al. O-GlcNAc modification during pregnancy: focus on placental environment. Front Physiol. 2018; 9: 1263. doi: 10.3389/fphys.2018.01263

16. Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod. 2024; 111(5): 987-999. doi: 10.1093/biolre/ioae139

17. Shi L, Kang K, Wang Z, et al. Glucose Regulates Glucose Transport and Metabolism via mTOR Signaling Pathway in Bovine Placental Trophoblast Cells. Animals (Basel). 2023; 14(1): 40. doi: 10.3390/ani14010040

18. Watkins AJ, Lucas ES, Marfy-Smith S, et al. Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction. 2015; 149(6): 563-75. doi: 10.1530/REP-14-0667

19. Han X, Li X, Liu H, et al. OGlcNAc modification influences endometrial receptivity by promoting endometrial cell proliferation, migration and invasion. Oncol Rep. 2019; 42(5): 2065-2074. doi: 10.3892/or.2019.7317

20. Wang AJ, Wang A, Hascall V. Detoxification of Hyperglycemia-induced Glucose Toxicity by the Hexosamine Biosynthetic Pathway. Front Biosci (Landmark Ed). 2024; 29(2): 71. doi: 10.31083/j.fbl2902071

21. Yu M, Qin H, Wang H, et al. N-glycosylation of uterine endometrium determines its receptivity. J Cell Physiol. 2020; 235(2): 1076-1089. doi: 10.1002/jcp.29022

22. Mortimer NT, Fischer ML, Waring AL, et al. Extracellular matrix protein N-glycosylation mediates immune self-tolerance in Drosophila melanogaster. Proc Natl Acad Sci USA. 2021; 118(39): e2017460118. doi: 10.1073/pnas.2017460118

23. Ferrer A, Starosta RT, Ranatunga W, et al. Fetal glycosylation defect due to ALG3 and COG5 variants detected via amniocentesis: complex glycosylation defect with embryonic lethal phenotype. Mol Genet Metab. 2020; 131(4): 424-429. doi: 10.1016/j.ymgme.2020.11.003

24. Liu C, Liang X, Wang J, et al. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways. Biomed Pharmacother. 2017; 88: 95-101. doi: 10.1016/j.biopha.2017.01.026

25. Yang Y, Zhang D, Qin H, Liu S, Yan Q. poFUT1 promotes endometrial decidualization by enhancing the O-fucosylation of Notch1. EBioMedicine. 2019; 44: 563-573. doi: 10.1016/j.ebiom.2019.05.027

26. Zheng Q, Zhang D, Yang Yu, et al. MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α1,3-fucosylation. Cell Death Differ. 2017; 24(12): 2161-2172. doi: 10.1038/cdd.2017.136

27. Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005; 26(1): 44-62. doi: 10.1210/er.2003-0021

28. Yang L, Zhang X, Gu Y, et al. SEC5 is involved in M2 polarization of macrophages via the STAT6 pathway, and its dysfunction in decidual macrophages is associated with recurrent spontaneous abortion. Front Cell Dev Biol. 2022; 10: 891748. doi: 10.3389/fcell.2022.891748

29. Li A, Li S, Zhang C, et al. FPR2 serves a role in recurrent spontaneous abortion by regulating trophoblast function via the PI3K/AKT signaling pathway. Mol Med Rep. 2021; 24(6): 838. doi: 10.3892/mmr.2021.12478

30. Gao L, Xu QH, Ma LN, et al. Trophoblast-derived Lactic Acid Orchestrates Decidual Macrophage Differentiation via SRC/LDHA Signaling in Early Pregnancy. Int J Biol Sci. 2022; 18(2): 599-616. doi: 10.7150/ijbs.6781690/cells12050711

31. Cai X, Jiang Y, Cao Z, et al. Mst1-mediated phosphorylation of Nur77 improves the endometrial receptivity in human and mice. EBioMedicine. 2023; 88: 104433. doi: 10.1016/j.ebiom.2022.104433

32. Liu B, Wu H, Huang Q, et al. Phosphorylated STAT3 inhibited the proliferation and suppression of decidual Treg cells in unexplained recurrent spontaneous abortion. Int Immunopharmacol. 2020; 82: 106337. doi: 10.1016/j.intimp.2020.106337

33. Liu X, Zhao J, Luan X, et al. SPARCL1 impedes trophoblast migration and invasion by down-regulating ERK phosphorylation and AP-1 production and altering EMT-related molecule expression. Placenta. 2020; 89: 33-41. doi: 10.1016/j.placenta.2019.10.007

34. Chang HM, Yeh ETH. SUMO: From Bench to Bedside. Physiol Rev. 2020; 100(4): 1599-1619. doi: 10.1152/physrev.00025.2019

35. Jones KT. Anaphase-promoting complex control in female mouse meiosis. Results Probl Cell Differ. 2011; 53: 343-63. doi: 10.1007/978-3-642-19065-0_15

36. Yamaguchi T, Sharma P, Athanasiou M, et al. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol. 2005; 25(12): 5171-82. doi: 10.1128/MCB.25.12.5171-5182.2005

37. Yu HI, Hsu T, Maruyama EO, et al. The requirement of SUMO2/3 for SENP2 mediated extraembryonic and embryonic development. Dev Dyn. 2020; 249(2): 237-244. doi: 10.1002/dvdy.125

38. Huang CJ, Wu D, Jiao XF, et al. Maternal SENP7 programs meiosis architecture and embryo survival in mouse. Biochim Biophys Acta Mol Cell Res. 2017; 1864(7): 1195-1206. doi: 10.1016/j.bbamcr.2017.03.005

39. Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol. 2014; 15(3): 163-77. doi: 10.1038/nrm3753

40. Hayashi T, Seki M, Maeda D, et al. Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res. 2002; 280(2): 212-21. doi: 10.1006/excr.2002.5634

41. Nacerddine K, Lehembre F, Bhaumik M, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell. 2005; 9(6): 769-79. doi: 10.1016/j.devcel.2005.10.007

42. Feitosa WB, Hwang K, Morris PL. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Developmental biology. 2018. 434(2): 278-291. doi: 10.1016/j.ydbio.2017.12.011

43. Wang J, Zhou Q, Ding J, et al. The conceivable functions of protein ubiquitination and deubiquitination in reproduction. Front Physiol. 2022; 13: 886261. doi: 10.3389/fphys.2022.886261

44. Ding J, Cheng Y, Zhang Y, et al. The miR-27a-3p/USP25 axis participates in the pathogenesis of recurrent miscarriage by inhibiting trophoblast migration and invasion. J Cell Physiol. 2019; 234(11): 19951-19963. doi: 10.1002/jcp.28593

45. Wang J, Ding J, Zhang S, et al. Decreased USP2a expression inhibits trophoblast invasion and associates with recurrent miscarriage. Front Immunol. 2021; 12: 717370. doi: 10.3389/fimmu.2021.717370

46. Fraile JM, Campos-Iglesias D, Rodríguez F, et al. Loss of the deubiquitinase USP36 destabilizes the RNA helicase DHX33 and causes preimplantation lethality in mice. J Biol Chem. 2018; 293(6): 2183-2194. doi: 10.1074/jbc.M117.788430

47. Feng J, Yin H, Baturuhu Dai Y, et al. Research progress of E3 ubiquitin ligase regulating biological behavior of human placental trophoblast cells. Front Endocrinol (Lausanne). 2023; 14: 1124041. doi: 10.3389/fendo.2023.1124041

48. Wu L, Liu Q, Fan C, et al. MALAT1 recruited the E3 ubiquitin ligase FBXW7 to induce CRY2 ubiquitin-mediated degradation and participated in trophoblast migration and invasion. J Cell Physiol. 2021; 236(3): 2169-2177. doi: 10.1002/jcp.30003

49. Chen LJ, Zhang NN, Zhou CX, et al. Gm364 coordinates MIB2/DLL3/Notch2 to regulate female fertility through AKT activation. Cell Death Differ. 2022; 29(2): 366-380. doi: 10.1038/s41418-021-00861-5

50. Xia P, Wang S, Du Y, et al. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 2013; 32(20): 2685-96. doi: 10.1038/emboj.2013.189

51. Xie J, Liang T, Zhao J, et al. Lnc-HZ08 regulates BPDE-induced trophoblast cell dysfunctions by promoting PI3K ubiquitin degradation and is associated with miscarriage. Cell Biol Toxicol. 2022; 38(2): 291-310. doi: 10.1007/s10565-021-09606-z

52. Heger K, Wickliffe KE, Ndoja A, et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature. 2018; 559(7712): 120-124. doi: 10.1038/s41586-018-0256-2

53. Wei H, Mundade R, Lange KC, Lu T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle. 2014; 13(1): 32-41. doi: 10.4161/cc.27353

54. Swiercz R, Cheng D, Kim D, Bedford MT. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem. 2007; 282(23): 16917-23. doi: 10.1074/jbc.M609778200

55. Hao F, Tang LC, Sun JX, et al. Decreased nitric oxide content mediated by asymmetrical dimethylarginine and protein l-arginine methyltransferase 3 in macrophages induces trophoblast apoptosis: a potential cause of recurrent miscarriage. Human Reproduction. 2021; 36(12): 3049-3061. doi: 10.1093/humrep/deab225

56. Bergo MO, Leung GK, Ambroziak P, et al. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem. 2001; 276(8): 5841-5. doi: 10.1074/jbc.C000831200

57. Xu R, Li C, Liu X, Gao S. Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2021; 12(1): 7-28. doi: 10.1007/s13238-020-00757-z

58. Matoba S, Liu Y, Lu F, et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 2014; 159(4): 884-95. doi: 10.1016/j.cell.2014.09.055

59. Fatima N, Ahmed SH, Salhan S, Rehman SM, Kaur J, Owais M, Chauhan SS. Study of methyl transferase (G9aMT) and methylated histone (H3-K9) expressions in unexplained recurrent spontaneous abortion (URSA) and normal early pregnancy. Mol Hum Reprod. 2011; 17(11): 693-701. doi: 10.1093/molehr/gar038

60. Zhou Q, Xiong Y, Qu B, et al. DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass? Front Immunol. 2021; 12: 738962. doi: 10.3389/fimmu.2021.738962

61. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. 2017; 547(7664): 419-424. doi: 10.1038/nature23262

62. Wen X, Zhang Q, Zhou L, et al. Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting

63. Cluster in the Decidual Microenvironment of Early Pregnancy. Cells. 2022; 11(19): 3130. doi: 10.3390/cells11193130

64. Fatima N, Ahmed SH, Chauhan SS, et al. Structural equation modelling analysis determining causal role among methyltransferases, methylation, and apoptosis during human pregnancy and abortion. Scientific Reports. 2020; 10(1): 12408. doi: 10.1038/s41598-020-68270-1

65. Sakai N, Maruyama T, Sakurai R, et al. Involvement of histone acetylation in ovarian steroid-induced decidualization of human endometrial stromal cells. J Biol Chem. 2003; 278(19): 16675-82. doi: 10.1074/jbc.M211715200

66. Chen X, Song QL, Li ZH, et al. Deletion of ACLY Disrupts Histone Acetylation and IL-10 Secretion in Trophoblasts, Which Inhibits M2 Polarization of Macrophages: A Possible Role in Recurrent Spontaneous Abortion. Oxid Med Cell Longev. 2022; 2022: 5216786. doi: 10.1155/2022/5216786

67. Wang P, Zhao C, Zhou H, et al. Dysregulation of Histone Deacetylases Inhibits Trophoblast Growth during Early Placental Development Partially through TFEB-Dependent Autophagy-Lysosomal Pathway. Int J Mol Sci. 2023; 24(15): 11899. doi: 10.3390/ijms241511899

68. Zhao P, Wang H, Wang H, et al. Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development. Epigenetics. 2020; 15(4): 369-385. doi: 10.1080/15592294.2019.1669375

69. Bhaskara S, Chyla BJ, Amann JM, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008; 30(1): 61-72. doi: 10.1016/j.molcel.2008.02.030

70. Kim TH, Yoo JY, Choi KC, et al. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci Transl Med. 2019; 11(474): eaaf7533. doi: 10.1126/scitranslmed. aaf7533

71. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019; 20(3): 156-174. doi: 10.1038/s41580-018-0081-3

72. Lee AR, Thanh Ha L, Kishigami S, Hosoi Y. Abnormal lysine acetylation with postovulatory oocyte aging. Reprod Med Biol. 2013; 13(2): 81-86. doi: 10.1007/s12522-013-0172-y

73. Kalebic N, Sorrentino S, Perlas E, et al. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun. 2013; 4: 1962. doi: 10.1038/ncomms2962

74. Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat. 2020; 53: 100729. doi: 10.1016/j.drup.2020.100729

75. Fukushima A, Zhang L, Huqi A, et al. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism. JCI Insight. 2018; 3(10): e99239. doi: 10.1172/jci.insight.99239

76. Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res. 2020; 126(4): 439-452. doi: 10.1161/CIRCRESAHA.119.315767

77. Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol. 2023; 17(1): 3-26. doi: 10.1002/1878-0261.13308

78. Wu L, Li J, Xu HL, et al. IL-7/IL-7R signaling pathway might play a role in recurrent pregnancy losses by increasing inflammatory Th17 cells and decreasing Treg cells. Am J Reprod Immunol. 2016; 76(6): 454-464. doi: 10.1111/aji.12588

79. Zhang M, Zhou L, Xu Y, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis. Nature. 2020; 586(7829): 434-439. doi: 10.1038/s41586-020-2799-2

80. Ding J, Yin T, Yan N, et al. FasL on decidual macrophages mediates trophoblast apoptosis: A potential cause of recurrent miscarriage. Int J Mol Med. 2019; 43(6): 2376-2386. doi: 10.3892/ijmm.2019.4146


Рецензия

Для цитирования:


Зиганшин А.М., Дикке Г.Б., Мусина А.М., Баянова Р.Р., Фролов А.Л. Посттрансляционные модификации белков и их роль в привычном невынашивании беременности: прогнозы и диагностика. Acta Biomedica Scientifica. 2025;10(5):38-51. https://doi.org/10.29413/ABS.2025-10.5.4

For citation:


Ziganshin A.M., Dikke G.B., Musina A.M., Bayanova R.R., Frolov A.L. Posttranslational modifications and its role in habitual miscarriage: prognosis, diagnosis and new approaches to therapy. Acta Biomedica Scientifica. 2025;10(5):38-51. (In Russ.) https://doi.org/10.29413/ABS.2025-10.5.4

Просмотров: 70


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)