Preview

Acta Biomedica Scientifica

Advanced search

Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus

https://doi.org/10.29413/ABS.2020-5.6.6

Abstract

Diabetes Mellitus (DM) is one of the most common non-communicable diseases in the world. Despite the long struggle with this nosology, the medical community still does not have a clear answer to all the pathogenetic links of this disease. Every year, the number of sugar-lowering medications increases, but most patients develop complications of diabetes. This is probably because not all aspects of the pathogenesis of DM have yet been studied, and therefore it is impossible to fully influence the course of this disease. One of the promising directions in the study of additional aspects of the pathogenesis of DM is the study of the gut microbiota of patients. Science knows the influence of microflora on the formation of eating behavior, various pathological processes, including inflammation, but this knowledge is limited. What influences the microflora itself and whether it is possible to change its composition with the help of changes in external factors? Additional research is required on the mutual influence of microflora and host organism, as well as the possibility of correcting these interactions. Several studies have confirmed the positive effect of lactobacilli on the physiological processes of the body. However, the human gut microbiota is very diverse, and the question of identifying bacteria that can participate and correct pathological processes requires additional research. Probably, if it is possible to influence the composition of the gut microbiota, the medical community can get a powerful tool for correcting many pathological conditions. It may be that this  component is the missing component necessary for a more accurate impact in the treatment of many diseases, including diabetes.

About the Authors

E. V. Chugunova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Postgraduate

Timiryazeva str. 16, Irkutsk 664003, Russian Federation





M. A. Darenskaya
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation
Dr. Sc. (Biol.), Leading Research Officer at the Laboratory of Pathophysiology

Timiryazeva str. 16, Irkutsk 664003, Russian Federation


References

1. Dedov II, Shestakova MV, Mayorov AYu. Algorithms of specialized medical care for patients with diabetes mellitus. 9th edition. Moscow; 2019. doi: 10.14341/DM221S1. (In Russ.)

2. Shemyakina NA, Namokonov EV, Darenskaya MA, Kolesnikov SI, Kolesnikova LI. Advanced glycation end products and glutathione status in patients with type 2 diabetes mellitus and macroangiopathy of the lower limbs. Free Radic Biol Med. 2018; 120(S1): S60-S61. doi: 10.1016/j.freeradbiomed.2018.04.200

3. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Gnusina SV, Kolesnikov SI. Oxidative stress in type 1 diabetes mellitus: Ethnic aspects. In: Rizwan Ahmad (ed.). Free Radicals, Antioxidants and Diseases. Rijeka: Intech Open; 2018: 65-72. doi: 10.5772/intechopen.76512

4. Kolesnikova LI, Darenskaya MA, Semenova NV, Grebenkina LA, Suturina LV, Dolgikh MI, et al. Lipid peroxidation and antioxidant protection in girls with type 1 diabetes mellitus during reproductive system development. Medicina. 2015; 51(2): 107-111. doi: 10.1016/j.medici.2015.01.009

5. Darenskaya MA, Kolesnikov SI, Rychkova LV, Grebenkina LA, Kolesnikova LI. Oxidative stress and antioxidant defense parameters in different diseases: Ethnic aspects. Free Radic Biol Med. 2018; 120(S1): S60. doi: 10.1016/j.freeradbiomed.2018.04.199

6. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Osipova EV, et al. Lipid status and predisposing genes in patients with diabetes mellitus type 1 from various ethnic groups. Bulletin of Experimental Biology and Medicine. 2015; 160: 278-280. doi: 10.1007/s10517-015-3149-5

7. Dedov II, Kolesnikova LI, Bardymova TP, Prokofiev SA, Ivanova ON, Gnusina SV. Ethnic features of diabetes mellitus in the peoples of the Baikal region. Bulletin of the Siberian branch of the Russian Academy of Medical Sciences. 2008; 28(1): 16-20. (In Russ.)

8. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016; 8(1): 42. doi: 10.1186/s13073-016-0303-2

9. Galland L. The gut microbiome and the brain. J Med Food. 2014; 17(12): 1261-1272. doi: 10.1089/jmf.2014.7000

10. Dzgoeva FKh, Yegshatyan LV. Intestinal microbiota and type 2 diabetes mellitus. Endocrinology: news, opinions, training. 2018; 7(3): 55-63. doi: 10.24411/2304-9529-2018-13005. (In Russ.).

11. Siezen RJ, Kleerebezem M. The human gut microbiome: Are we our enterotypes? Microb Biotechnol. 2011; 4(5): 550-553. doi: 10.1111/j.1751-7915.2011.00290.x

12. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011; 5(1): 82-91. doi: 10.1038/ismej.2010.92

13. De Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014; 57(8): 1569-1577. doi: 10.1007/s00125-014-3274-0

14. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013; 62(4): 1238-1244. doi: 10.2337/db12-0526

15. Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet›s disease. Microbiome. 2018; 6(1): 135. doi: 10.1186/s40168-018-0520-6

16. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fasmediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol. 2012; 302(12): G1405-G1415. doi: 10.1152/ajpgi.00543.2011

17. Gülden E, Wong FS, Wen L. The gut microbiota and type 1 diabetes. Clin Immunol. 2015; 159(2): 143-153. doi: 10.1016/j.clim.2015.05.013

18. Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. 2010; 53(4): 741-748. doi: 10.1007/s00125-009-1626-y

19. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008; 455(7216): 1109-1113. doi: 10.1038/nature07336

20. Mc Ardle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol. 2013; 4: 52. doi: 10.3389/fendo.2013.00052

21. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-323. doi: 10.1038/nri2515

22. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012; 28(5): 539-543. doi: 10.1016/j.nut.2011.08.013

23. Ooi LG, Liong MT. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int J Mol Sci. 2010; 11(6): 2499-2522. doi: 10.3390/ijms11062499

24. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138: 271-281. doi: 10.1016/j.diabres.2018.02.023

25. Dedov II, Kolesnikova LI, Bardymova TP, Prokofiev SA, Ivanova ON. Clinical, genetic and metabolic features of diabetes mellitus in patients of the Buryat population. Diabetes Mellitus. 2006; (3): 2-5. (In Russ.)

26. Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016; 5(9): 795-803. doi: 10.1016/j.molmet.2016.07.004

27. Belkova NL, Nemchenko UM, Pogodina AV, Romanitsa AI, Novikova EA, Rychkova LV, et al. Composition and structure of gut microbiome in adolescents with obesity and different breastfeeding duration. Bulletin of Experimental Biology and Medicine. 2019; 167(6): 759-762. doi: 10.1007/s10517-019-04617-7

28. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500: 585-588. doi: 10.1038/nature12480

29. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541-546. doi: 10.1038/nature12506

30. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013; 62(10): 3341-3349. doi: 10.2337/db13-0844

31. Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018; 61(4): 810-820. doi: 10.1007/s00125-018-4550-1

32. Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: The ADDITION-PRO study. Diabetes. 2015; 64: 2513-2525. doi: 10.2337/db14-1751

33. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology. 2017; 158(10): 3416-3425. doi: 10.1210/en.2017-00391

34. Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017; 8(9): 3155-3164. doi: 10.1039/C7FO00593H

35. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012; 95(1): 50-60. doi: 10.5740/jaoacint.sge_macfarlane

36. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014; 2014: 162021. doi: 10.1155/2014/162021

37. Wang S, Li Q, Zang Y, Zhao Y, Liu N, Wang Y, et al. Apple polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats. Int J Biol Macromol. 2017; 99: 282-292. doi: 10.1016/j.ijbiomac.2017.02.074

38. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018; 359(6380): 1151-1156. doi: 10.1126/science.aao5774

39. van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, OldeDamink SWM, van Eijk HM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism. 2018: 87: 25-35. doi: 10.1016/j.metabol.2018.06.009

40. Torres S, Fabersani E, Marquez A, Gauffin-Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 2019; 58(1): 27-43. doi: 10.1007/s00394-018-1790-2

41. Gérard C, Brown KA. Obesity and breast cancer – Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol. 2018; 466: 15-30. doi: 10.1016/j.mce.2017.09.014

42. Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012; 55(9): 2456-2468. doi: 10.1007/s00125-012-2592-3

43. Balakumar M, Prabhu D, Sathishkumar C, Prabu P, Rokana N, Kumar R, et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018; 57(1): 279-295. doi: 10.1007/s00394-016-1317-7

44. Chen LH, Chen YH, Cheng KС, Chien TY, Chan CH, Tsao SP, et al. Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in highenergy-diet-fed rats. J Nutr Biochem. 2018; 54: 87-94. doi: 10.1016/j.jnutbio.2017.11.004

45. Liu J, Li Y, Yang P, Wan J, Chang Q, Wang TTY, et al. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. J Agric Food Chem. 2017; 65(42): 9237-9246. doi: 10.1021/acs.jafc.7b03382

46. Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: Is browning a new approach to the treatment of obesity? Arch Med Res. 2017; 48(5): 401-413. doi: 10.1016/j.arcmed.2017.10.002

47. Trayhurn P. Recruiting brown adipose tissue in human obesity. Diabetes. 2016; 65(5): 1158-1160. doi: 10.2337/dbi16-0002

48. Trayhurn P. Brown adipose tissue – a therapeutic target in obesity? Front Physiol. 2018; 9: 1672. doi: 10.3389/fphys.2018.01672

49. Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, et al. BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunology. 2018; 11(5): 1363-1374. doi: 10.1038/s41385-018-0043-2

50. Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol. 2019; 10: 29. doi: 10.3389/fendo.2019.00029

51. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: From current human evidence to future possibilities. Diabetologia. 2017; 60(6): 943-951. doi: 10.1007/s00125-017-4278-3

52. Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: A meta-analysis of randomized controlled trials. Adv Pharm Bull. 2018; 8(4): 565-574. doi: 10.15171/apb.2018.065

53. Mahboobi S, Iraj B, Maghsoudi Z, Feizi A, Ghiasvand R, Askari G, et al. The effects of probiotic supplementation on markers of blood lipids, and blood pressure in patients with prediabetes: a randomized clinical trial. Int J Prev Med. 2014; 5(10): 1239-1246.

54. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Gen. 2016; 48(11): 1407-1412. doi: 10.1038/ng.3663

55. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017; 5: 98. doi: 10.1186/s40168-017-0320-4


Review

For citations:


Chugunova E.V., Darenskaya M.A. Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus. Acta Biomedica Scientifica. 2020;5(6):51-57. (In Russ.) https://doi.org/10.29413/ABS.2020-5.6.6

Views: 592


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)