Preview

Acta Biomedica Scientifica

Расширенный поиск

Современное представление о кишечной микробиоте у пациентов с сахарным диабетом

https://doi.org/10.29413/ABS.2020-5.6.6

Полный текст:

Аннотация

Сахарный диабет (СД) представляет собой одно из самых распространённых неинфекционных заболеваний в мире. Несмотря на длительную борьбу с данной нозологией, у медицинского сообщества до сих пор нет чёткого ответа на вопросы, касающиеся всех патогенетических звеньев этого заболевания. С каждым годом расширяется круг препаратов для коррекции гипергликемии, однако у пациентов  продолжают формироваться поздние осложнения СД, приводящие к инвалидизации и  гибели. Вероятно, это происходит потому, что до сих пор изучены не все аспекты патогенеза СД, и, следовательно, невозможно полноценно влиять на течение этого заболевания. На сегодняшний день одно из интересных и перспективных направлений  видится в изучении и коррекции кишечной микробиоты пациентов с СД. Возникает множество вопросов о влиянии микробиоты кишечника на организм хозяина, а также большой интерес представляет и обратное взаимодействие – изменение бактериального состава под воздействием меняющегося в современном обществе стиля питания, экологической обстановки, изменение кишечной микробиоты при смене климатических и географических составляющих жизни человека. Возможно, имея больше данных об особенности кишечной микробиоты при различных заболеваниях и возможности её изменения, медицинскому сообществу откроются новые  перспективные направления в коррекции метаболических изменений при многих  нозологических единицах. Известно влияние кишечной микробиоты на формирование и распространение различных патофизиологических процессов в организме, но насколько возможно изменение микробиоты кишечника с целью коррекции патологических процесс, в том числе формировании гипергликемии – это направление требует прицельного и многоцентрового изучения.

Об авторах

Е. В. Чугунова
ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека»
Россия

аспирант

664003, г. Иркутск, ул. Тимирязева, 16, Россия



М. А. Даренская
ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека»
Россия

доктор биологических наук, ведущий научный сотрудник лаборатории патофизиологии

664003, г. Иркутск, ул. Тимирязева, 16, Россия



Список литературы

1. Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й выпуск. М.; 2019. doi: 10.14341/DM221S1

2. Shemyakina NA, Namokonov EV, Darenskaya MA, Kolesnikov SI, Kolesnikova LI. Advanced glycation end products and glutathione status in patients with type 2 diabetes mellitus and macroangiopathy of the lower limbs. Free Radic Biol Med. 2018; 120(S1): S60-S61. doi: 10.1016/j.freeradbiomed.2018.04.200

3. Kolesnikova LI, Darenskaya MA, Grebenkina LA, Gnusina SV, Kolesnikov SI. Oxidative stress in type 1 diabetes mellitus: Ethnic aspects. In: Rizwan Ahmad (ed.). Free Radicals, Antioxidants and Diseases. Rijeka: Intech Open; 2018: 65-72. doi: 10.5772/intechopen.76512

4. Kolesnikova LI, Darenskaya MA, Semenova NV, Grebenkina LA, Suturina LV, Dolgikh MI, et al. Lipid peroxidation and antioxidant protection in girls with type 1 diabetes mellitus during reproductive system development. Medicina. 2015; 51(2): 107-111. doi: 10.1016/j.medici.2015.01.009

5. Darenskaya MA, Kolesnikov SI, Rychkova LV, Grebenkina LA, Kolesnikova LI. Oxidative stress and antioxidant defense parameters in different diseases: Ethnic aspects. Free Radic Biol Med. 2018; 120(S1): S60. doi: 10.1016/j.freeradbiomed.2018.04.199

6. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Semenova NV, Osipova EV, et al. Lipid status and predisposing genes in patients with diabetes mellitus type 1 from various ethnic groups. Bulletin of Experimental Biology and Medicine. 2015; 160: 278-280. doi: 10.1007/s10517-015-3149-5

7. Дедов И.И., Колесникова Л.И., Бардымова Т.П., Прокофьев С.А., Иванова О.Н., Гнусина С.В. Этнические особенности сахарного диабета у народов Прибайкалья. Бюллетень СО РАМН. 2008; 28(1): 16-20.

8. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016; 8(1): 42. doi: 10.1186/s13073-016-0303-2

9. Galland L. The gut microbiome and the brain. J Med Food. 2014; 17(12): 1261-1272. doi: 10.1089/jmf.2014.7000

10. Дзгоева Ф.Х., Егшатян Л.В. Кишечная микробиота и сахарный диабет типа 2. Эндокринология: новости, мнения, обучение. 2018; 7(3): 55-63. doi: 10.24411/2304-9529-2018-13005

11. Siezen RJ, Kleerebezem M. The human gut microbiome: Are we our enterotypes? Microb Biotechnol. 2011; 4(5): 550-553. doi: 10.1111/j.1751-7915.2011.00290.x

12. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011; 5(1): 82-91. doi: 10.1038/ismej.2010.92

13. De Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014; 57(8): 1569-1577. doi: 10.1007/s00125-014-3274-0

14. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013; 62(4): 1238-1244. doi: 10.2337/db12-0526

15. Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet›s disease. Microbiome. 2018; 6(1): 135. doi: 10.1186/s40168-018-0520-6

16. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fasmediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol. 2012; 302(12): G1405-G1415. doi: 10.1152/ajpgi.00543.2011

17. Gülden E, Wong FS, Wen L. The gut microbiota and type 1 diabetes. Clin Immunol. 2015; 159(2): 143-153. doi: 10.1016/j.clim.2015.05.013

18. Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. 2010; 53(4): 741-748. doi: 10.1007/s00125-009-1626-y

19. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008; 455(7216): 1109-1113. doi: 10.1038/nature07336

20. Mc Ardle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol. 2013; 4: 52. doi: 10.3389/fendo.2013.00052

21. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009; 9(5): 313-323. doi: 10.1038/nri2515

22. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012; 28(5): 539-543. doi: 10.1016/j.nut.2011.08.013

23. Ooi LG, Liong MT. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int J Mol Sci. 2010; 11(6): 2499-2522. doi: 10.3390/ijms11062499

24. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138: 271-281. doi: 10.1016/j.diabres.2018.02.023

25. Дедов И.И., Колесникова Л.И., Бардымова Т.П., Прокофьев С.А., Иванова О.Н. Клинические, генетические и метаболические особенности сахарного диабета у больных бурятской популяции. Сахарный диабет. 2006; (3): 2-5.

26. Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016; 5(9): 795-803. doi: 10.1016/j.molmet.2016.07.004

27. Belkova NL, Nemchenko UM, Pogodina AV, Romanitsa AI, Novikova EA, Rychkova LV, et al. Composition and structure of gut microbiome in adolescents with obesity and different breastfeeding duration. Bulletin of Experimental Biology and Medicine. 2019; 167(6): 759-762. doi: 10.1007/s10517-019-04617-7

28. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500: 585-588. doi: 10.1038/nature12480

29. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541-546. doi: 10.1038/nature12506

30. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013; 62(10): 3341-3349. doi: 10.2337/db13-0844

31. Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018; 61(4): 810-820. doi: 10.1007/s00125-018-4550-1

32. Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: The ADDITION-PRO study. Diabetes. 2015; 64: 2513-2525. doi: 10.2337/db14-1751

33. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide

34. and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology. 2017; 158(10): 3416-3425. doi: 10.1210/en.2017-00391

35. Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017; 8(9): 3155-3164. doi: 10.1039/C7FO00593H

36. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012; 95(1): 50-60. doi: 10.5740/jaoacint.sge_macfarlane

37. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014; 2014: 162021. doi: 10.1155/2014/162021

38. Wang S, Li Q, Zang Y, Zhao Y, Liu N, Wang Y, et al. Apple polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats. Int J Biol Macromol. 2017; 99: 282-292. doi: 10.1016/j.ijbiomac.2017.02.074

39. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018; 359(6380): 1151-1156. doi: 10.1126/science.aao5774

40. van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, OldeDamink SWM, van Eijk HM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism. 2018: 87: 25-35. doi: 10.1016/j.metabol.2018.06.009

41. Torres S, Fabersani E, Marquez A, Gauffin-Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 2019; 58(1): 27-43. doi: 10.1007/s00394-018-1790-2

42. Gérard C, Brown KA. Obesity and breast cancer – Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol. 2018; 466: 15-30. doi: 10.1016/j.mce.2017.09.014

43. Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012; 55(9): 2456-2468. doi: 10.1007/s00125-012-2592-3

44. Balakumar M, Prabhu D, Sathishkumar C, Prabu P, Rokana N, Kumar R, et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018; 57(1): 279-295. doi: 10.1007/s00394-016-1317-7

45. Chen LH, Chen YH, Cheng KС, Chien TY, Chan CH, Tsao SP, et al. Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in highenergy-diet-fed rats. J Nutr Biochem. 2018; 54: 87-94. doi: 10.1016/j.jnutbio.2017.11.004

46. Liu J, Li Y, Yang P, Wan J, Chang Q, Wang TTY, et al. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. J Agric Food Chem. 2017; 65(42): 9237-9246. doi: 10.1021/acs.jafc.7b03382

47. Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: Is browning a new approach to the treatment of obesity? Arch Med Res. 2017; 48(5): 401-413. doi: 10.1016/j.arcmed.2017.10.002

48. Trayhurn P. Recruiting brown adipose tissue in human obesity. Diabetes. 2016; 65(5): 1158-1160. doi: 10.2337/dbi16-0002

49. Trayhurn P. Brown adipose tissue – a therapeutic target in obesity? Front Physiol. 2018; 9: 1672. doi: 10.3389/fphys.2018.01672

50. Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, et al. BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunology. 2018; 11(5): 1363-1374. doi: 10.1038/s41385-018-0043-2

51. Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol. 2019; 10: 29. doi: 10.3389/fendo.2019.00029

52. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: From current human evidence to future possibilities. Diabetologia. 2017; 60(6): 943-951. doi: 10.1007/s00125-017-4278-3

53. Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: A meta-analysis of randomized controlled trials. Adv Pharm Bull. 2018; 8(4): 565-574. doi: 10.15171/apb.2018.065

54. Mahboobi S, Iraj B, Maghsoudi Z, Feizi A, Ghiasvand R, Askari G, et al. The effects of probiotic supplementation on markers of blood lipids, and blood pressure in patients with prediabetes: a randomized clinical trial. Int J Prev Med. 2014; 5(10): 1239-1246.

55. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Gen. 2016; 48(11): 1407-1412. doi: 10.1038/ng.3663

56. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017; 5: 98. doi: 10.1186/s40168-017-0320-4


Для цитирования:


Чугунова Е.В., Даренская М.А. Современное представление о кишечной микробиоте у пациентов с сахарным диабетом. Acta Biomedica Scientifica. 2020;5(6):51-57. https://doi.org/10.29413/ABS.2020-5.6.6

For citation:


Chugunova E.V., Darenskaya M.A. Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus. Acta Biomedica Scientifica. 2020;5(6):51-57. (In Russ.) https://doi.org/10.29413/ABS.2020-5.6.6

Просмотров: 178


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)