Comparative analysis of TRPM8 gene and copd markers expression in rat lungs following exposure to cigarette smoke and tobacco aerosol
https://doi.org/10.29413/ABS.2025-10.6.24
Abstract
Background. Chronic Obstructive Pulmonary Disease (COPD) remains a global medical and social problem. The ion channel TRPM8, a cold receptor, is known to be involved in the pathogenesis of the disease. However, existing experimental COPD models often exclude verification of changes in its expression.
Objective. To model COPD-like changes in rats exposed to cigarette smoke and tobacco aerosol, with a comprehensive assessment of morphological changes in lung tissue and the expression level of the TRPM8 gene, as well as key COPD marker genes.
Materials and methods. Male Wistar rats were divided into one control and two experimental groups (n = 30). For 42 days, the first experimental group was subjected to daily inhalation exposure to cigarette smoke (CS), and the second group to tobacco aerosol (TA). On day 42, histological analysis of the lungs and assessment of the expression of COPD marker genes (CCR3, CCL13, COL4A2, IL2RA, VWF) and TRPM8 were performed using RT-PCR.
Results. CS exposure caused significant morphological changes: sclerosis (73.3 % of animals), infiltrate (100 %), emphysema (56.7 %), and goblet cell hyperplasia (90 %) compared to control (p < 0.001). TA led to less pronounced changes, and emphysema was absent. In the CS group, a significant increase in expression was observed: COL4A2 by 63.5-fold, IL2RA by 7.9-fold, CCL13 by 4.7-fold, and TRPM8 by 2.2-fold. In the TA group, expression also increased significantly: COL4A2 by 9.6-fold, IL2RA by 3.0-fold, CCL13 by 7.0-fold, and TRPM8 by 2.6-fold. CS induced a stronger expression of COL4A2 and IL2RA compared to TA.
Conclusion. The model with 42-day CS exposure most adequately reproduces the COPD-like phenotype. Importantly, both experimental models caused a significant increase in the transcription of the cold receptor gene TRPM8, confirming its role in the pathogenesis and revealing new targets for therapy.
About the Authors
P. D. TimkinRussian Federation
Pavel D. Timkin – 2nd year postgraduate student, Department of Chemistry
Gorkogo St., 101, Amur region, Blagoveshchensk 675001
M. A. Kiselev
Russian Federation
Maxim A. Kiselev – 6th year student
Gorkogo St., 101, Amur region, Blagoveshchensk 675001
D. A. Shapovalova
Russian Federation
Daria A. Shapovalova – 3rd year student
Gorkogo St., 101, Amur region, Blagoveshchensk 675001
D. E. Naumov
Russian Federation
Denis E. Naumov – Cand. Sc. (Med.), Head of Laboratory of Molecular and Translational Research
Kalinina St., 22, Amur region, Blagoveshchensk 675011
P. M. Linskaya
Russian Federation
Polina M. Linskaya – 3rd year student
Gorkogo St., 101, Amur region, Blagoveshchensk 675001
E. A. Borodin
Russian Federation
Evgeny A. Borodin – Dr. Sc. (Med.), Professor, Head of the Department of Chemistry
Gorkogo St., 101, Amur region, Blagoveshchensk 675001
References
1. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br. J. Pharmacol. 2004; 141(4): 737–745. doi: 10.1038/sj.bjp.0705652.
2. Bolger GB. Therapeutic Targets and Precision Medicine in COPD: Inflammation, Ion Channels, Both, or Neither? Int. J. Mol. Sci. 2023; 24(24): 17363. doi: 10.3390/ijms242417363
3. Cazzola M, Rogliani P, Blasi F. Can treatable traits be the approach to addressing the complexity and heterogeneity of COPD? Int. J. Chron. Obstruct. Pulmon. Dis. 2023; 18: 1959–1964. doi: 10.2147/COPD.S428391
4. Wang J, Yang G, Li M, Zhou X. Transient receptor potential melastatin 8 (TRPM8)-based mechanisms underlie both the cold temperature-induced inflammatory reactions and the synergistic effect of cigarette smoke in human bronchial epithelial (16HBE) cells. Front. Physiol. 2019; 10: 285. doi: 10.3389/fphys.2019.00285
5. Lamb JG, Romero EG, Lu Z, Marcus SK, Peterson HC, Veranth JM, et al. Activation of Human Transient Receptor Potential Melastatin-8 (TRPM8) by Calcium-Rich Particulate Materials and Effects on Human Lung Cells. Mol. Pharmacol. 2017; 92(6): 653–664. doi: 10.1124/mol.117.109959
6. Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J. Allergy Clin. Immunol. 2011; 128(3): 626-34.e1-5. doi: 10.1016/j.jaci.2011.04.032
7. Lin AH, Liu MH, Ko HB, Perng DW, Lee TS, Kou YR. Inflammatory Effects of Menthol vs. Non-menthol Cigarette Smoke Extract on Human Lung Epithelial Cells: A Double-Hit on TRPM8 by Reactive Oxygen Species and Menthol. Front Physiol. 2017; 8: 263. doi: 10.3389/fphys.2017.00263
8. Lin AH, Liu MH, Ko HK, Perng DW, Lee TS, Kou YR. Menthol Cigarette Smoke Induces More Severe Lung Inflammation Than Non-menthol Cigarette Smoke Does in Mice With Subchronic Exposure – Role of TRPM8. Front Physiol. 2018; 9: 1817. doi: 10.3389/fphys.2018.01817
9. Li MC, Yang G, Zhou XD, Tselluyko S, Perelman JM. The pathophysiological mechanisms underlying mucus hypersecretion induced by cold temperatures in cigarette smoke-exposed rats. Int J Mol Med. 2014; 33(1): 83-90. doi: 10.3892/ijmm.2013.1535
10. Feng T, Cao J, Ma X, Wang X, Guo X, Yan N, et al. Animal models of chronic obstructive pulmonary disease: a systematic review. Front Med (Lausanne). 2024; 11: 1474870. doi: 10.3389/fmed.2024.1474870
11. Wong ET, Kogel U, Veljkovic E, Martin F, Xiang Y, Boue S, et al. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regul. Toxicol. Pharmacol. 2016; 81 (Suppl 2): S59–S81. doi: 10.1016/j.yrtph.2016.10.015
12. Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatinand vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006; 290(6): L1267–76. doi: 10.1152/ajplung.00515.2005
13. Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, et al. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). J. Toxicol. Environ. Health B. Crit. Rev. 2023; 26(5): 275–305. doi: 10.1080/10937404.2023.2208886
14. Guan Q, Tian Y, Zhang Z, Zhang L, Zhao P, Li J. Identification of Potential Key Genes in the Pathogenesis of Chronic Obstructive Pulmonary Disease Through Bioinformatics Analysis. Front. Genet. 2021; 12: 754569. doi: 10.3389/fgene.2021.754569
15. Lang G, Henao C, Almstetter M, Arndt D, Goujon C, Maeder S. Non-targeted analytical comparison of a heated tobacco product aerosol against mainstream cigarette smoke: does heating tobacco produce an inherently different set of aerosol constituents? Anal Bioanal Chem. 2024; 416(6): 1349-1361. doi: 10.1007/s00216-024-05126-x
16. Moennikes O, Vanscheeuwijck PM, Friedrichs B, Anskeit E, Patskan GJ. Reduced toxicological activity of cigarette smoke by the addition of ammonia magnesium phosphate to the paper of an electrically heated cigarette: subchronic inhalation toxicology. Inhal Toxicol. 2008; 20(7): 647-63. doi: 10.1080/08958370701813273
17. Wright JL, Churg A. Animal models of chronic obstructive pulmonary disease. Am JPhysiol Lung Cell Mol Physiol. 2008; 295(1): L1-L15. doi: 10.1152/ajplung.90200.2008
18. Flatschacher D, Speckbacher V, Zeilinger S. qRAT: an R-based stand-alone application for relative expression analysis of RT-qPCR data. BMC Bioinformatics. 2022; 23(1): 286. doi: 10.1186/s12859-022-04823-7
19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47. doi: 10.1093/nar/gkv007
20. Zhang JD, Biczok R, Ruschhaupt M. ddCt: The ddCt Algorithm for the Analysis of Quantitative Real-Time PCR (qRT-PCR). R package version 1.62.0. 2024. doi: 10.18129/B9.bioc.ddCt
21. Voynow JA, Fischer BM, Malarkey DE, Burch LH, Wong T, Longphre M, et al. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 287(6): L1293–302. doi: 10.1152/ajplung.00140.2004
22. Malykhin FТ, Kostornaya IV. Morphological changes in the respiratory organs in chronic obstructive pulmonary disease. Russian Journal of Archive of Pathology. 2016; 78(1): 42-50. (In Russ.). doi: 10.17116/patol201678142-50
23. Karnaushkina MA, Fedosenko SV, Vinogradov DL, Streltsova TV, Ogorodova LM. Chronic Obstructive Pulmonary Disease and Cardiovascular Diseases: Systemic Effects. Doctor.Ru. Internal Medicine Cardiology Rheumatology. 2015; 8(109)–9(110): 50–53.
24. Smirnova OV, Vykhristenko LR. The role of immune system cells in the pathogenesis of bronchial asthma. Meditsinskie novosti. 2011; 5: 14–19. (In Russ.).
25. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 2008; 118(11): 3546–3556. doi: 10.1172/jci36130
26. Fang C, Kang B, Zhao P, Ran J, Wang L, Zhao L, et al. MCP-4 and Eotaxin-3 are novel biomarkers for chronic obstructive pulmonary disease. Can. Respir. J. 2023; 2023: 8659293. doi: 10.1155/2023/8659293
27. Jha A, Thwaites RS, Tunstall T, Kon OM, Shattock RJ, Hansel TT, et al. Increased nasal mucosal interferon and CCL13 response to a TLR7/8 agonist in asthma and allergic rhinitis. J. Allergy Clin. Immunol. 2021; 147(2): 694–703.e12. doi: 10.1016/j.jaci.2020.07.012
28. Zhang Y, Ren L, Sun J, Han F, Guo X. Increased Serum Soluble Interleukin-2 Receptor Associated with Severity of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2021; 16: 2561-2573. doi: 10.2147/COPD.S321904
29. Chernyaev AL, Samsonova MV. Inflammation in chronic obstructive pulmonary disease: molecular basis of pathogenesis. Consilium Medicum. 2008; 10(10): 57–63.
30. Wang J, Yang G, Li M, Zhou X. Transient receptor potential melastatin 8 (TRPM8)-based mechanisms underlie both the cold temperature-induced inflammatory reactions and the synergistic effect of cigarette smoke in human bronchial epithelial (16HBE) cells. Front. Physiol. 2019; 10: 285. doi: 10.3389/fphys.2019.00285
31. Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Afanas’eva EY, Sheludko EG, et al. Effect of TRPM8 and TRPA1 polymorphisms on COPD predisposition and lung function in COPD patients. J. Pers. Med. 2021; 11(2): 108. doi: 10.3390/jpm11020108
32. Sugaylo IYu, Gassan DA, Kotova OO, Naumov DE, Gorchakova YaG, Sheludko EG, et al. The influence of TRPM8 polymorphism on the progression of bronchial obstruction in patients with chronic obstructive pulmonary disease. Bulletin Physiology and Pathology of Respiration. 2022; (86):15-23. (In Russ.). doi: 10.36604/1998-5029-2022-86-15-23
33. Feng T, Cao J, Ma X, Wang X, Guo X, Yan N, et al. Animal models of chronic obstructive pulmonary disease: a systematic review. Front Med (Lausanne). 2024; 11: 1474870. doi: 10.3389/fmed.2024.1474870
34. Zhou F, Li DF, Yuan L, Fu HY, Ma P, Zhang KD, et al. A comparative study of two chronic obstructive pulmonary disease mouse models established by different methods. Zhonghua Jie He He Hu Xi Za Zhi. 2019; 42(5): 367-371.(In Chinese). doi: 10.3760/cma.j.issn.1001-0939.2019.05.010
35. Yang Y, Di T, Zhang Z, Liu J, Fu C, Wu Y, et al. Dynamic evolution of emphysema and airway remodeling in two mouse models of COPD. BMC Pulm Med. 2021; 21(1): 134. doi: 10.1186/s12890-021-01456-z
36. Nitta NA, Sato T, Komura M, Yoshikawa H, Suzuki Y, Mitsui A, et al. Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary emphysema in murine lungs. Am J Physiol Lung Cell Mol Physiol. 2022; 322(5): L699-L711. doi: 10.1152/ajplung.00215.2021
37. Li MC, Yang G, Zhou XD, Tselluyko S, Perelman JM. The pathophysiological mechanisms underlying mucus hypersecretion induced by cold temperatures in cigarette smoke-exposed rats. Int J Mol Med. 2014; 33(1): 83-90. doi: 10.3892/ijmm.2013.1535
38. Saha P, Jain S, Mukherjee I, Panda SR, Zeki AA, Naidu VGM, et al. The effects of dual IQOS and cigarette smoke exposure on airway epithelial cells: implications for lung health and respiratory disease pathogenesis. ERJ Open Res. 2023; 9(3): 00558-2022. doi: 10.1183/23120541.00558-2022
Review
For citations:
Timkin P.D., Kiselev M.A., Shapovalova D.A., Naumov D.E., Linskaya P.M., Borodin E.A. Comparative analysis of TRPM8 gene and copd markers expression in rat lungs following exposure to cigarette smoke and tobacco aerosol. Acta Biomedica Scientifica. 2025;10(6):225-227. (In Russ.) https://doi.org/10.29413/ABS.2025-10.6.24
JATS XML

.png)































