Preview

Acta Biomedica Scientifica

Advanced search

Pathogenetic mechanisms of enteric insufficiency development in disseminated peritonitis

https://doi.org/10.29413/ABS.2025-10.6.23

Abstract

Disseminated purulent peritonitis is one of the main causes of high mortality in emergency surgery which, with the development of abdominal sepsis, can reach 35–41 %. Secondary peritonitis initiates a cascade of pathophysiological changes in the intestinal system, including intestinal barrier dysfunction, impaired neuroendocrine regulation, and disruption of microbiotic homeostasis. These changes in 85– 100 % of cases naturally lead to the development of enteric insufficiency syndrome (EIS), which is a key pathogenetic factor in the development of abdominal sepsis and multiple organ dysfunction via the “intestine – target organ” mechanism.

In this review article, we analyzed recent open-source studies on the development of enteral insufficiency in secondary peritonitis. We searched the databases of the Scientific Library of Russia (eLibrary.ru, Cyberleninka.ru) and the US National Library of Medicine (PubMed.org, Wiley.com) over the past decade (2014–2024) in Russian and English. The following keywords were used for the search: “peritonitis”, “enteral insufficiency”, “etiology of enteral insufficiency”, “pathogenesis of enteral insufficiency”, and “abdominal sepsis”. The inclusion criteria for the review included studies on the development of enteral insufficiency in inflammatory abdominal diseases and peritonitis. Exclusion criteria for the review: articles containing information on the development of enteral failure in patients with septic, metabolic, and complex nutritional complications typically occurring in patients with inflammatory bowel disease requiring multidisciplinary intervention with metabolic and nutritional support for recovery, as well as enteral failure requiring long-term nutritional support.

This literature review aims are to systematize the current understanding of the pathogenesis of enteral failure syndrome associated with secondary purulent peritonitis, taking into account existing gaps in research. The results of this analysis have practical value for surgeons and specialists in related fields.

About the Authors

E. E. Chepurnykh
Irkutsk Scientific Centre of Surgery and Traumatology; Irkutsk State Medical University
Russian Federation

Elena E. Chepurnykh – Cand. Sc. (Med.), Docent, Academic Secretary, Irkutsk Scientific Centre of Surgery and Traumatology; Associate Professor at the Department of Intermediate-Level Surgery and Urology, Irkutsk State Medical University

Bortsov Revolyutsii str. 1, Irkutsk 664003; 
Krasnogo Vosstaniya str. 1, Irkutsk 664003



I. A. Shurygina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Irina A. Shurygina – Dr. Sc. (Med), Professor of the RAS, Deputy Director for Science

Bortsov Revolyutsii str. 1, Irkutsk 664003



M. G. Shurygin
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Mikhail G. Shurygin – Dr. Sc. (Med.), Head of the ScientifiLaboratory Department 

Bortsov Revolyutsii str. 1, Irkutsk 664003



S. V. Sokolova
Irkutsk State Medical University
Russian Federation

Svetlana V. Sokolova – Cand. Sc. (Med.), Associate Professor at the Department of Intermediate-Level Surgery and Urology

Krasnogo Vosstaniya str. 1, Irkutsk 664003



References

1. Zatevakhin II, Kiriyenko AI, Kubyshkin VA. Abdominal surgery. National guidelines: brief edition. Moscow: GEOTAR-Media; 2016. (In Russ.).

2. Ross JT, Matthay MA, Harris HW. Secondary peritonitis: principles of diagnosis and intervention. BMJ. 2018; 361: k1407. doi: 10.1136/bmj.k1407

3. Pathak AA, Agrawal V, Sharma N, Kumar K, Bagla C, Fouzdar A. Prediction of mortality in secondary peritonitis: A prospective study comparing p-POSSUM, Mannheim Peritonitis Index, and Jabalpur Peritonitis Index. Perioper Med. 2023; 12(1): 65. doi: 10.1186/s13741-023-00355-7

4. Sartelli M, Abu-Zidan FM, Catena F, Griffiths EA, Di Saverio S, Coimbra R, et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study). World JEmerg Surg. 2015; 10: 61. doi: 10.1186/s13017-015-0055-0

5. Saraev AR, Nazarov ShK. Pathogenesis and classification of advanced peritonitis. Pirogov Russian Journal of Surgery. 2019; (12): 106-110. (In Russ.). doi: 10.17116/hirurgia20191211067

6. Pearse RM, Moreno RP, Bauer P, Pelosi P, Metnitz P, Spies C, et al. European Surgical Outcomes Study (EuSOS) group for the Trials groups of the European Society of Intensive Care Medicine and the European Society of Anaesthesiology. Mortality after surgery in Europe: A 7 day cohort study. Lancet. 2012; 380(9847): 1059-1065. doi: 10.1016/S0140-6736(12)61148-9

7. Schein M, Wittmann DH, Holzheimer R, Condon RE. Hypothesis: compartmentalization of cytokines in intraabdominal infection. Surgery. 1996; 119: 694-700. doi: 10.1016/S0039-6060(96)80195-4

8. de Jong PR, González-Navajas JM, Jansen NJG. The digestive tract as the origin of systemic inflammation. Crit Care. 2016; (20): 279. doi: 10.1186/s13054-016-1458-3

9. Misiev DK, Malkov IS. Enteral insufficiency in the pathogenesis of acute intestinal obstruction and methods of its correction (literature review). Oncology Bulletin of the Volga region. 2022; 13(1): 61-66. (In Russ.). doi: 10.32000/20781466-2022-1-61-66

10. Aliev SA, Aliev ES. Enteral insufficiency syndrome: current provisions about the terminology, pathogenesis and treatment (review of literature). Grekov’s Bulletin of Surgery. 2020; 179(6): 101-106. (In Russ.). doi: 10.24884/00424625-2020-179-6-101-106

11. Zhang X, Liu H, Hashimoto K, Yuan S, Zhang J. The gut-liver axis in sepsis: interaction mechanisms and therapeutic potential. Crit Care. 2022; 26(1): 213. doi: 10.1186/s13054-022-04090-1

12. Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017; 23(2): 143-148. doi: 10.1097/MCC.0000000000000386

13. Lyons JD, Coopersmith CM. Pathophysiology of the Gut and the Microbiome in the Host Response. Pediatr Crit Care Med. 2017; 18(Suppl 1): S46-S49. doi: 10.1097/PCC.0000000000001046

14. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024; 19(2): 275-293. doi: 10.1007/s11739023-03374-w

15. Oami T, Shimazui T, Yumoto T, Otani S, Hayashi Y, Coopersmith CM. Gut integrity in intensive care: alterations in host permeability and the microbiome as potential therapeutic targets. J Intensive Care. 2025; 13(1): 16. doi: 10.1186/s40560-025-00786-y

16. Chernyadyev SA, Bulaeva EI, Kubasov KA. Pathogenetic aspects of the development of intestinal paresis in peritonitis. Problems of Dentistry. 2016; 12(4): 84-89. (In Russ.). doi: 10.18481/2077-7566-2016-12-4-84-89

17. Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Marangos M, et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018; 46(6): 751-760. doi: 10.1007/s15010-018-1178-5

18. Wang SZ, Yu YJ, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms. 2020; 8(4): E527. doi: 10.3390/microorganisms8040527

19. Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients. 2020; 12(4): 1185. doi: 10.3390/nu12041185

20. Khomyakov EA, Rybakov EG. Postoperative paresis of the gastrointestinal tract. Pirogov Russian Journal of Surgery. 2017; (3): 76-85. (In Russ.). doi: 10.17116/hirurgia2017376-85

21. Chepurnykh EE, Shurygina IA, Shurygin MG. Shurygin MG. Enteral insufficiency in purulent inflammation in the abdominal cavity. Advances in Health and Disease. New York; 2025: 1-44.

22. Wu X, Yang J, Bao X, Wang Y. Toll-like receptor 4 damages the intestinal epithelial cells by activating endoplasmic reticulum stress in septic rats. Peer J. 2024; 12: e18185. doi: 10.7717/peerj.18185

23. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014; 49(6): 681-689. doi: 10.3109/00365521.2014.898326

24. Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014; 20(4): 214-223. doi:10.1016/j.molmed.2013.08.004

25. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. Int J Environ Res Public Health. 2021; 18(23): 12836. doi: 10.3390/ijerph182312836

26. Benton SM, Liang Z, Hao L, Liang Y, Hebbar G, Jones DP, et al. Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis. J Inflamm (Lond). 2012; 9(1): 36. doi: 10.1186/1476-9255-9-36

27. Pool R, Gomez H, Kellum JA. Mechanisms of organ dysfunction in sepsis. Crit Care Clin. 2018; 34(1): 63-80. doi: 10.1016/j.ccc.2017.08.003

28. Wu X, Yang J, Bao X, Wang Y. Toll-like receptor 4 damages the intestinal epithelial cells by activating endoplasmic reticulum stress in septic rats. Peer J. 2024; 12: e18185. doi: 10.7717/peerj.18185

29. Rupani B, Caputo FJ, Watkins AC, Vega D, Magnotti LJ, Lu Q, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery. 2007; 141(4): 481-489. doi: 10.1016/j.surg.2006.10.008

30. Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010; 138(5): 1681– 96. doi: 10.1053/j.gastro.2010.03.002

31. Parshin DS. Immunohistochemical patterns of experimental acute enteric failure. Sovremennye problemy nauki i obrazovaniya. 2020; 6: 125 (In Russ.). doi: 10.17513/spno.30278

32. Volkov DV, Stadnikov AA, Tarasenko VS, Chukina OV, Kornilov SA. Morphofunctional state of the small intestine in enteral insufficiency syndrome against the background of experimental peritonitis and antioxidant therapy. Sovremennye problemy nauki i obrazovaniya. 2016; 2: 105. (In Russ.). doi: 10.17513/spno.24316

33. Shurygina IA, Chepurnykh EE, Dremina NN, Shurygin MG. Development of a scale for assessing the severity of enteral insufficiency. Sovremennye problemy nauki i obrazovaniya. 2021; (5): 95. (in Rus.)]. doi: 10.17513/spno.31151

34. Chepurnykh EE, Shurygina IA, Fadeeva TV, Dremina NN, Shurygin MG. p38 MAPK inhibitors in the treatment of experimental peritonitis. Clinical and Experimental Surgery. Petrovsky Journal. 2024; 12 (3): 32–9. (In Russ.). doi: 10.33029/23081198-2024-12-3-32-39

35. Chepurnykh EE, Shurygina IA, Shurygin MG, Dremina NN, Trukhan IS. Method for prediction of enteral insufficiency in acute peritonitis. Clinical and Experimental Surgery. Petrovsky Journal. 2023; 11(4): 17–35. (In Russ.). doi: 10.33029/2308-1198-2023-11-4-00-00

36. Tang AL, Shen MJ, Zhang GQ. Intestinal microcirculation dysfunction in sepsis: pathophysiology, clinical monitoring, and therapeutic interventions. World J Emerg Med. 2022; 13(5): 343-348. doi: 10.5847/wjem.j.1920-8642.2022.031

37. Cui YL, Wang L, Tian ZT, Lin ZF, Chen DC. Effect of rhubarb pre-treatment on intestinal microcirculation in septic rats. Am J Chin Med. 2014; 42(5): 1215-1227. doi: 10.1142/S0192415X14500761

38. Bubovich EV, Darvin VV, Startseva ON, Nokhrina SN. The role of endothelial dysfunction in the pathogenesis of enteral insufficiency. Bulletin of Surgut State University. Medicine. 2020; 4(46): 87-92. (in Rus.). doi: 10.34822/2304-9448-2020-4-87-92

39. Chepurnykh EE, Shurygina IA, Shaul’skaja ES, Shurygin MG. Role of cytokines in the pathogenesis of diffuse bacterial peritonitis. Acta biomedica scientifica. 2016; 1(4): 177-182. (In Russ.). doi: 10.12737/23029

40. Yoseph BP, Klingensmith NJ, Liang Z, Breed ER, Burd EM, Mittal R, et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock. 2016; 46(1): 52-59. doi: 10.1097/SHK.0000000000000565

41. Arumugam P, Saha K, Nighot P. Intestinal epithelial tight junction barrier regulation by novel pathways. Inflamm Bowel Dis. 2025; 31(1): 259-271. doi: 10.1093/ibd/izae232

42. Otani S, Coopersmith CM. Gut integrity in critical illness. J Intensive Care. 2019; 7: 17. doi: 10.1186/s40560019-0372-6

43. Yumoto T, Oami T, Liang Z, Burd EM, Ford ML, Turner JR, et al. Intestinal epithelial-specific occluding deletion worsens gut permeability and survival following sepsis. Shock. 2025; 63(4): 597-605. doi: 10.1097/SHK.0000000000002531

44. Schreiber F, Arasteh JM, Lawley TD. Pathogen resistance mediated by IL-22 signaling at the epithelial-microbiota interface. J Mol Biol. 2015; 427(23): 3676-3682. doi: 10.1016/j.jmb.2015.10.013

45. Nevado R, Forcén R, Layunta E, Murillo MD, Grasa L. Neomycin and bacitracin reduce the intestinal permeability in mice and increase the expression of some tight-junction proteins. Rev Esp Enferm Dig. 2015; 107(11): 672-676. doi: 10.17235/reed.2015.3868/2015

46. Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the intestinal mucosa during sepsis. Front Immunol. 2019; 10: 891. doi: 10.3389/fimmu.2019.00891

47. Cerovic V, Bain CC, Mowat AM, Milling SW. Intestinal macrophages and dendritic cells: what’s the difference? Trends Immunol. 2014; 35: 270-277. doi: 10.1016/j.it.2014.04.003

48. Amalakuhan B, Habib SA, Mangat M, Reyes LF, Rodriguez AH, Hinojosa CA, et al. Endothelial adhesion molecules and multiple organ failure in patients with severe sepsis. Cytokine. 2016; 88: 267-273. doi: 10.1016/j.cyto.2016.08.028

49. Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med. 2017; 45(2): 337-347. doi: 10.1097/CCM.0000000000002172

50. Miller WD, Keskey R, Alverdy JC. Sepsis and the microbiome: A vicious cycle. J Infect Dis. 2021; 223(12 Suppl 2): S264-S269. doi: 10.1093/infdis/jiaa682

51. Karczewski J, Poniedziałek B, Adamski Z, Rzymski P. The effects of the microbiota on the host immune system. Autoimmunity. 2014; 47(8): 494-504. doi: 10.3109/08916934.2014.938322

52. Williamson AJ, Alverdy JC. Influence of the microbiome on anastomotic leak. Clin Colon Rectal Surg. 2021; 34(6): 439-446. doi: 10.1055/s-0041-1735276

53. Fadeeva TV, Shurygina IA, Dremina NN, Vetokhina AV, Chepurnykh EE, Shurygin MG. Bacterial translocation in experimental peritonitis. Transbaikalian Medical Bulletin. 2019; (4): 128–133. (In Russ.).

54. Dremina NN, Chepurnykh EE, Fadeeva TV, Shurygina IA. Bacterial translocation in peritonitis. Sovremennye problemy nauki i obrazovaniya. 2018; 6: 48. (In Rus.)]. doi: 10.17513/spno.28251

55. Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. 2015; 6: 8292. doi: 10.1038/ncomms9292

56. Reintam Blaser A, Preiser JC, Fruhwald S, Wilmer A, Wernerman J, Benstoem C, et al. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine. Crit Care. 2020; 24(1): 224. doi: 10.1186/s13054-020-02889-4

57. Parshin DS, Topchiev MA, Misrikhanov MK, Topchiev AM, Pyatakov SN, Chechukhina OB, et al. Characteristics of the enteral pathobiome in disseminated purulent peritonitis complicated by enteral insufficiency syndrome. Sovremennye problemy nauki i obrazovaniya. 2020; 4: 56 (In Russ.). doi: 10.17513/spno.30960


Review

For citations:


Chepurnykh E.E., Shurygina I.A., Shurygin M.G., Sokolova S.V. Pathogenetic mechanisms of enteric insufficiency development in disseminated peritonitis. Acta Biomedica Scientifica. 2025;10(6):214-224. (In Russ.) https://doi.org/10.29413/ABS.2025-10.6.23

Views: 20

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)