Preview

Acta Biomedica Scientifica

Advanced search

Comparative Analysis of Morphometric Data on Internal Diameters of Segments Forming Bifurcations in Corrosion Casts of Human Coronary Arteries and Their Calculation Using Contemporary Methods

https://doi.org/10.29413/ABS.2025-10.5.11

Abstract

Background. The study of human coronary arteries (HCA) as a fractal system composed of arterial bifurcations (AB) has proven promising and effectiveness in the development of digital methods for diagnosing and treating vascular pathology. However, at present, there is no consensus among researchers regarding the theory of the optimal structure of HCA bifurcations and the methodology for calculating the internal diameters of arterial segments (AS) that form these bifurcations under normal conditions.
Objective. To conduct a comparative analysis of morphometric data from real normal HCA and contemporary numerical modeling methods for calculating diameters of segments forming AB.
Methods. A comparative study was carried out on the internal diameters of 2,072 AS comprising 1,078 AB from 60 corrosion casts of HCA obtained from hearts of both sexes, aged 36 to 74 years, without signs of pathology. Morphometric measurements were compared with values calculated using established equations, proposed by Mette S. Olufsen and G. Finet.
Results. It was found that the internal diameters of AS forming HCA bifurcations, obtained by morphometry of corrosion casts and by calculations using the equations of Mette S. Olufsen and G. Finet, differ significantly.
Conclusion. For numerical modeling of realistic HCA geometry as a fractal structure composed of heterogeneous AB, the use of the equations proposed Mette S. Olufsen and G. Finet would not be appropriate. At present, there is no universally accepted theory of the optimal structure of HCA bifurcations, and consequently, no established technology for numerical modeling of realistic vascular geometry.

About the Authors

O. K. Zenin
Penza State University
Россия

Oleg K. Zenin – Dr. Sc. (Med.), Professor; Professor at the Department of Human Anatomy

Krasnaya St., 40, 440026 Penza, Russian Federation 



E. S. Kafarov
A.A. Kadyrov Chechen State University
Россия

Edgar S. Kafarov – Dr. Sc. (Med.), Associate Professor; Head of the Department of Normal and Topographical Anatomy with Operative Surgery

A. Sheripov St., 32, 364024, Grozny, Chechen Republic, Russian Federation



I. Miltiadis
University of Palermo
Италия

Ilias Miltiadis – MSc student 

Piazza Marina, 61, 90133 Palermo, Italy 



References

1. Kafarov ES, Miltykh I, Dmitriev AV, Zenin OK. Anatomical variability of kidney arterial vasculature based on zonal and segmental topography. Heliyon. 2023; 9(4): e15315. doi: 10.1016/j.heliyon.2023.e15315

2. Blanco PJ, Watanabe SM, Passos MARF, Lemos PA, Feijóo RA. An anatomically detailed arterial network model for One-Dimensional Computational Hemodynamics. IEEE Trans Biomed Eng. 2015; 62(2): 736-753. doi: 10.1109/TBME.2014.2364522

3. Kopylova VS, Boronovskiy SE, Nartsissov YR. Tree topology analysis of the arterial system model. J Phys Conf Ser. 2018; 1141: 012027. doi: 10.1088/1742-6596/1141/1/012027

4. Roy Choudhury K, Skwerer S. Branch order regression for modeling brain vasculature. Med Phys. 2018; 45(3): 1123-1134. doi: 10.1002/mp.12751

5. Cuitino NS, Johannesson B, Pelegri AA. A Computational Model of Continuous Hollow Cerebrovascular Arterioles Using a Fractal L-System. In: Volume 3: Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers. 2018: V003T04A060. doi: 10.1115/IMECE2018-88511

6. Zhang Z, Marin D, Drangova M, Boykov Y. Confluent Vessel Trees with Accurate Bifurcations. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2021: 9568-9577. doi: 10.1109/CVPR46437.2021.00945

7. Alberto OC, Alberto P M. The Geometry of Coronary Artery Bifurcations and its role in plaque formation. Clin Cardiol Cardiovasc Med. 2022; 4: 24-30. doi: 10.33805/2639.6807.131

8. Silva J, Nagato A, Reis R, Nardeli C, Abreu F, Bezerra F. Morphometric analysis of the coronary arteries: a study of the external diameters. J Morphol Sci. 2016; 33(03): 138-141. doi: 10.4322/jms.093115

9. Fandaros M, Kwok C, Wolf Z, Labropoulos N, Yin W. Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and Biomechanics: A Pathway to Clinical Use. Cardiovasc Eng Technol. 2024; 15(5): 503-521. doi: 10.1007/s13239-024-00731-4

10. Certificate of state registration of database No. 2021623049 Russian Federation. Quantitative anatomy of the intraorgan arterial channel of the human heart: No. 2021622956: submitted. 14.12.2021: publ. 20.12.2021 / O. Zenin, A.V. Dmitriev, I.S. Miltykh; applicant Federal State Budgetary Educational Institution of Higher Education “Penza State University”. (In Russ.).

11. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J. Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions. Ann Biomed Eng. 2000; 28(11): 1281-1299. doi: 10.1114/1.1326031

12. Finet G, Gilard M, Perrenot B, et al. Fractal geometry of arterial coronary bifurcations: a quantitative coronary angiography and intravascular ultrasound analysis. EuroIntervention. 2008; 3(4): 490-498. doi: 10.4244/EIJV3I4A87

13. Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol. 1926; 9(6): 835-841. doi: 10/dq9qn9

14. Uylings HBM. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol. 1977; 39(5): 509-520. doi: 10/db7vdb

15. de la Torre Hernandez JM, Hernández Hernandez F, Alfonso F, et al. Prospective Application of Pre-Defined Intravascular Ultrasound Criteria for Assessment of Intermediate Left Main Coronary Artery Lesions: Results From the Multicenter LITRO Study. J Am Coll Cardiol. 2011; 58(4): 351-358. doi: 10.1016/j.jacc.2011.02.064

16. Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol-Heart Circ Physiol. 1993; 265(1 Pt 2): H350-65. doi: 10.1152/ajpheart.1993.265.1.H350

17. Pollanen MS. Dimensional optimization at different levels of the arterial hierarchy. J Theor Biol. 1992; 159(2): 267-270. doi: 10/b9898g

18. Taylor DJ, Saxton H, Halliday I, et al. Systematic review and meta-analysis of Murray’s law in the coronary arterial circulation. Am J Physiol-Heart Circ Physiol. 2024; 327(1): H182-H190. doi: 10.1152/ajpheart.00142.2024

19. Zamir M. Nonsymmetrical bifurcations in arterial branching. J Gen Physiol. 1978; 72(6): 837-845. doi: 10.1085/jgp.72.6.837

20. Feynman RP, Leighton RB, Sands M. The Feynman Lectures on Physics; New Millennium Ed. Basic Books; 2010.

21. Drake R, Wayne Vogl A, Mitchell A. Gray’s Atlas of Anatomy. 3rd ed. Churchill Livingstone; 2020.

22. Dhungana A, Buradi A, Dahal P, Bora BJ. Impact of Bifurcation and Bifurcation Angle on the Hemodynamics of Coronary Arteries. In: Bhattacharyya S, Verma S, Harikrishnan AR, eds. Fluid Mechanics and Fluid Power (Vol. 3). Springer Nature. 2023: 31-36. doi: 10.1007/978-981-19-6270-7_6

23. Kassab GS. Functional hierarchy of coronary circulation: direct evidence of a structure-function relation. Am J Physiol-Heart Circ Physiol. 2005; 289(6): H2559-H2565. doi: 10.1152/ajpheart.00561.2005

24. Kassab GS, Molloi S. Cross-sectional area and volume compliance of porcine left coronary arteries. Am J Physiol-Heart Circ Physiol. 2001; 281(2): H623-H628. doi: 10.1152/ajpheart.2001.281.2.H623

25. Zenin OK, Overko VS, Dmitriev AV, Miltykh IS. Hemodynamic features in a structurally different arterial intraorganic bifurcations of the human heart by numerical modeling. Sib J Life Sci Agric. 2021; 13(2): 11-31. doi: 10.12731/2658-6649-2021-13-2-11-31


Review

For citations:


Zenin O.K., Kafarov E.S., Miltiadis I. Comparative Analysis of Morphometric Data on Internal Diameters of Segments Forming Bifurcations in Corrosion Casts of Human Coronary Arteries and Their Calculation Using Contemporary Methods. Acta Biomedica Scientifica. 2025;10(5):100-106. (In Russ.) https://doi.org/10.29413/ABS.2025-10.5.11

Views: 144

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)