Preview

Acta Biomedica Scientifica

Advanced search

Association between variants of PNPLA3 (rs738409), UCP2 (rs660339) and HFE (rs1800562, rs1800730, rs1799945) genes and changes in the functioning of the lipid peroxidation – antioxidant defense system in plasma in non-alcoholic fatty liver disease patients

https://doi.org/10.29413/ABS.2025-10.5.8

Abstract

Currently reaching epidemic proportions, non-alcoholic fatty liver disease (NAFLD) particularly affects individuals of employable age. The pathogenesis of NAFLD involves a combination of hereditary factors and external influences that collectively disrupt lipid and carbohydrate metabolic pathways and impair the balance between lipid peroxidation and antioxidant protection mechanisms. To date, there has been limited exploration of the possible relationship between these pathological changes and specific variants of the PNPLA3, UCP2, and HFE genes.
The aim. To examine the association between some markers of the LPO-AOD system in plasma depending on polymorphic variants of the PNPLA3, UCP2 and HFE genes.
Materials and methods. For this study, we collected whole blood samples from 116 patients with NAFLD (65 with steatosis and 51 with steatohepatitis) and 100 healthy volunteers. All participants had peripheral venous blood collected for subsequent molecular genetic and biochemical analysis.
Results. Our findings indicate that in steatosis, catalase activity was elevated in carriers of the rs660339 TT genotype, while SOD activity was reduced in those with the rs738409 GG variant.
For steatohepatitis patients, ceruloplasmin levels were altered in opposite directions based on genotype: the rs1800730 TT variant was associated with lower levels, whereas the rs660339 TT genotype was linked to higher levels.
Conclusions. Polymorphisms rs738409 of the PNPLA3 gene, rs1800730 of the HFE gene and rs660339 of the UCP2 gene are associated with an imbalance in the LPOAOD system, which may be caused by an increase of the iron level and a change in the antioxidant activity of the UCP2 protein, as well as an increase in the production of prooxidants.

About the Authors

O. V. Smirnov
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North; Siberian Federal University
Russian Federation

Olga V. Smirnova – Dr. Sc. (Med), professor, head of the laboratory of clinical pathophysiology; head of the medical biology department 

Partizan Zheleznyak Str., 3G, Krasnoyarskiy krai, Krasnoyarsk 660022, Russian Federation

Svobodny Ave., 79, Krasnoyarskiy krai, Krasnoyarsk 660041, Russian Federation 



E. V. Kasparov
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
Russian Federation

Eduard V. Kasparov – Dr. Sc. (Med), professor, director 

Partizan Zheleznyak Str., 3G, Krasnoyarskiy krai, Krasnoyarsk 660022, Russian Federation



I. E. Kasparova
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
Russian Federation

Irina E. Kasparova – Cand. Sc. (Med), senior researcher of the laboratory of clinical pathophysiology

Partizan Zheleznyak Str., 3G, Krasnoyarskiy krai, Krasnoyarsk 660022, Russian Federation



D. V. Lagutinskaya
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
Russian Federation

Darya V. Lagutinskaya – junior researcher of the Laboratory of Clinical Pathophysiology

Partizan Zheleznyak Str., 3G, Krasnoyarskiy krai, Krasnoyarsk 660022, Russian Federation



References

1. Thorkild I. A. Sørensen, Martinez AR, Høj Jørgensen TS. Epidemiology of Obesity. From Obesity to Diabetes. Handbook of Experimental Pharmacology. Springer Nature Link. 2022: 3-27. doi: 10.1007/164_2022_581

2. Riazi K, Azhari H, Charette J, Underwood F, King J, Ashfar E, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterology and Hepatology. 2022; 7(9): 851-861. doi: 10.1016/S2468-1253(22)00165-0

3. EASL-EASD-EASO. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). Journal of Hepatology. 2024; 81(3): 492-542. doi: 10.1016/j.jhep.2024.04.031

4. Juanola O, Martinez-Lopez S, Frances R, Gomez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. International Journal of Environmental Research and Public Health. 2021; 18(10): 5227. doi: 10.3390/ijerph18105227

5. Teng M, Cheng H, Huang D, Chan K, Tan D, Lim W, et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clinical and Molecular Hepatology. 2023; 29(Suppl): S32-S42. doi: 10.3350/cmh.2022.0365

6. Mann J, Pietzner M, Wittemans L, Rolfe E, Kerrison N, Imamura F, et al. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Human Molecular Genetics. 2020; 29(20): 3451-3463. doi: 10.1093/hmg/ddaa162

7. Chen Y, Xiaomeng D, Kuppa A, Feitosa M, Bielak L, O’Connell J, et al. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nature Genetics. 2023; 55(10): 1640-1650. doi: 10.1038/s41588-023-01497-6

8. Corradini E, Buzzetti E, Dongiovanni P, Scarlini S, Caleffi A, Pelusi S, et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. Journal of Hepatology. 2021; 75(3): 506-513. doi: 10.1016/j.jhep.2021.03.014

9. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennachio L, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics. 2008; 40(12): 1461-1465. doi: 10.1038/ng.257

10. Sookoian S, Castano G, Burgueno A, Gianotti T, Rosselli M, Pirola C. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic

11. fatty liver disease severity. Journal of Lipid Research. 2009; 50(10): 2111-2116. doi: 10.1093/hmg/ddaa162

12. Kienesberg P, Oberer M, Lass A, Zencher R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. Journal of Lipid Research. 2009; 50(Suppl): S63-S68. doi: 10.1194/jlr.R800082-JLR200

13. de Souza B, Brondani L, Boucas A, Sortica D, Kramer C, Canani L, et al. Associations between UCP1-3826A/G, UCP2-866G/A, Ala55Val and Ins/Del, and UCP3-55C/T Polymorphisms and Susceptibility to Type 2 Diabetes Mellitus: Case-Control Study and Meta-Analysis. PLoS One. 2013; 8(1): e54259. doi: 10.1371/journal.pone.0054259

14. Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene. 2015; 574(2): 179-192. doi: 10.1016/j.gene.2015.10.009

15. Ye Q, Qian X, Yin W, Wang F, Han T. HFE gene: Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis of 5,758 Cases and 14,741 Controls. PLoS One. 2016; 11(9): e0163423. doi: 10.1371/journal.pone.0163423

16. Hong T, Chen Y, Li X, Lu Y. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. Oxidative Medicine and Cellular Longevity. 2021; 2021: 6889533. doi: 10.1155/2021/6889533

17. Javed A, Mehboob K, Rashid A, Majid A, Khan S, Baig Z. Oxidative Stress and Lipid Peroxidation in NAFLD with and without Type 2 Diabetes Mellitus. Journal of College of Physicians and Surgeons Pakistan. 2023; 33(11): 1254-1258. doi: 10.29271/jcpsp.2023.11.1254

18. Chen J, Xiaopeng L, Ge C, Min J, Wang F. The multifaceted role of ferroptosis in liver disease. Cell Death and Differentiation. 2022; 29(3): 467-480. doi: 10.1038/s41418-022-00941-0

19. Qian Y, Lixing S. Unveiling the role of ferroptosis in the progression from NAFLD to NASH: recent advances in mechanistic understanding. Frontiers in Endocrinology (Lausanne).2024; 4(15): 1431652. doi: 10.3389/fendo.2024.1431652

20. Cenqin L, Chen Y, Zhang Z, Xie J, Yu C, Xu L, et al. Iron Status and NAFLD among European Populations: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients. 2022; 14(24): 5237. doi: 10.3390/nu14245237

21. Clinical Guidelines Index. Nealkogolnaya zhirovaya bolezn pecheni. (2024). (In Russ.). URL: https://cr.minzdrav.gov.ru/preview-cr/748_2. [date of access: June 25, 2025].

22. Asakava T, Matsushita S. Coloring conditions of thiobarbituricacid test, for detecting lipid hydroperoxides. Lipids. 1980; 15: 137-140. doi: 10.1007/BF02540959

23. Chumakov VN, Osinskaya LF. Quantitative method for determining the activity of zinc-, copper-dependent superoxide dismutase in biological material. Voprosy meditcinskoi himii. 1977; 23(5): 712-715. (In Russ.).

24. Mamontova NS, Beloborodova EN, Tyukalova LN. Catalase activity in chronic alcoholism. Clinicheskaia laboratornaia diagnostika. 1994; 1: 27-28. (In Russ.).

25. Ravin HA. An improved colorimetric enzymatic assay of ceruloplasmin. Journal of Laboratory and Clinical Medicine. 1961; 58: 161-168.

26. Smirnova OV, Lagutinskaya DV, Kasparova IE. Traits of the lipid peroxidation – antioxidant defense system in non-alcoholic fatty liver disease. Meditsinskiy sovet. 2024; 18(8): 116-123. (In Russ.). doi: 10.21518/ms2024-197

27. Smirnova OV, Lagutinskaya DV, Kasparov EV. Effect of PNPLA3 (rs738409), UCP2 (rs660339) and HFE (rs1800562, rs1800730, rs1799945) gene polymorphisms on metabolic parameters in patients with nonalcoholic fatty liver disease. Genetika. 2025; 61(4): 66-75. (In Russ.). doi: 10.21518/10.31857/S0016675825040076

28. Shin S, Cho H, Song S, Song D. Catalase and nonalcoholic fatty liver disease. Pflügers Archiv-European Journal of Physiology. 2018; 470: 1721-1737. doi: 10.1007/s00424-018-2195-z

29. Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes, Metabolic Syndrome and Obesity. 2022; 15: 695-711. doi: 10.2147/DMSO.S346648

30. Sangiuolo F, Puxeddu E, Pezzuto G, Cavalli F, Longo G, Comandini A, et al. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis. European Respiratory Journal. 2015; 45(2): 483-490. doi: 10.1183/09031936.00104814

31. Lanie F, Ropert M, Le Lan C, Loreal O, Bellissant E, Jard C, et al. Serum ceruloplasmin and ferroxidase activity are decreased in HFE C282Y homozygote male iron-overloaded patients. Journal of Hepatology. 2002; 36(1): 60-65. doi: 10.1016/s0168-8278(01)00254-9

32. Stevens R, Morris J, Cordis G, Anderson L, Rosenberg D, Sasser L. Oxidative damage in colon and mammary tissue of the HFE-knockout mouse. Human Molecular Genetics. 2003; 34(9): 1212-1216. doi: 10.1016/s0891-5849(03)00072-8

33. Xia Z, Hu M, Zheng L, Zheng E, Deng M, Wu J, et al. Assessing whether serum ceruloplasmin promotes non-alcoholic steatohepatitis via regulating iron metabolism. Journal of Medical Biochemistry. 2023; 42(1): 113-121. doi: 10.5937/jomb0-37597


Review

For citations:


Smirnov O.V., Kasparov E.V., Kasparova I.E., Lagutinskaya D.V. Association between variants of PNPLA3 (rs738409), UCP2 (rs660339) and HFE (rs1800562, rs1800730, rs1799945) genes and changes in the functioning of the lipid peroxidation – antioxidant defense system in plasma in non-alcoholic fatty liver disease patients. Acta Biomedica Scientifica. 2025;10(5):77-85. (In Russ.) https://doi.org/10.29413/ABS.2025-10.5.8

Views: 94


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)