Pathogenetic mechanisms of blood-brain barrier dysfunction in preeclampsia
https://doi.org/10.29413/ABS.2025-10.5.3
Abstract
Hypertensive disorders during pregnancy are the most difficult and unresolved problems of modern obstetrics. Today, their frequency ranges from 12 to 40 % and has no downward trend. About 60–70 % of maternal deaths in hypertensive disorders occur due to cerebral complications, due to the development of eclampsia, cerebral edema and stroke. Underestimating the severity of the condition, inadequate treatment and delayed delivery are the main causes of maternal morbidity and mortality. Despite significant advances in understanding the main stages of the pathogenesis of preeclampsia, the mechanisms of damage to cerebral vascular endothelial cells, as well as the features of local paracrine and autocrine regulation of cerebrovascular blood flow in proinflammatory and hypoxic conditions remain relevant for further study. This literature review is devoted to the study of the main mechanisms of disruption and/or damage to the blood-brain barrier in preeclampsia. A systematic analysis of modern Russian and foreign literature was carried out using the information databases eLibrary, Scopus, PubMed, MEDLINE and Cochrane Library for the period from January 2010 to December 2024. Information is provided on the role of vascular endothelial growth factor and its receptor system in increasing transcellular transport, as well as close contact proteins in enhancing the paracellular pathway. The mechanisms of impaired autoregulation of cerebral blood flow leading to the development of vasogenic cerebral edema in preeclampsia and eclampsia are described. Understanding the key links in the pathogenesis of damage to the blood-brain barrier in preeclampsia will allow us to further identify reliable and accessible early predictors of the development of cerebral dysfunction in this complication of pregnancy.
About the Authors
E. S. TaskinaRussian Federation
Elizaveta S. Taskina – Cand. Sc. (Med.), Associate Professor at the Department of Ophthalmology
Gorkiy str., 39a, 672000 Chita, Russian Federation
N. N. Tsybikov
Russian Federation
Namzhil N. Tsybikov – Dr. Sc. (Med.), Professor, Head of the Department of Pathological Physiology
Gorkiy str., 39a, 672000 Chita, Russian Federation
I. V. Kibalina
Russian Federation
Irina V. Kibalina – Dr. Sc. (Med.), Associate Professor, Director of the Research Institute of Molecular Medicine, Head of the Department of Normal Physiology named after Professor B.I. Kuznik
Gorkiy str., 39a, 672000 Chita, Russian Federation
V. A. Mudrov
Russian Federation
Viktor A. Mudrov – Dr. Sc. (Med.), Associate Professor, Professor of the Department of Obstetrics and Gynecology, Faculty of Pediatrics and Faculty of Additional Professional Education
Gorkiy str., 39a, 672000 Chita, Russian Federation
S. O. Davydov
Russian Federation
Sergey O. Davydov – Dr. Sc. (Med.), Professor of the Department of Traumatology and Orthopedics
Gorkiy str., 39a, 672000 Chita, Russian Federation
References
1. Wu P, Green M, Myers JE. Hypertensive disorders of pregnancy. BMJ. 2023; 381: e071653. doi: 10.1136/bmj-2022-071653
2. Ijomone OK, Osahon IR, Okoh COA, Akingbade GT, Ijomone OM. Neurovascular dysfunctions in hypertensive disorders of pregnancy. Metab Brain Dis. 2021; 36(6): 1109-1117. doi: 10.1007/s11011-021-00710-x
3. Waghamare S, Juneja A, Samanta R, Gaurav A. Posterior reversible encephalopathy syndrome-associated bilateral cortical blindness as presenting feature of severe pre-eclampsia. BMJ Case Rep. 2021; 14(7): e244797. doi: 10.1136/bcr-2021-244797
4. Anton N, Bogdanici CM, Branișteanu DC, Armeanu T, Ilie OD, Doroftei B. A Narrative Review on Neuro-Ophthalmological Manifestations That May Occur during Pregnancy. Life (Basel). 2024; 14(4): 431. doi: 10.3390/life14040431
5. Biswas J, Khatun N, Bandyopadhyay R, Bhattacharya N, Maitra A, Mukherjee S, et al. Optic nerve sheath diameter measurements using ultrasonography to diagnose raised intracranial pressure in preeclampsia: an observational study. J Turk Ger Gynecol Assoc. 2023; 24(1): 5-11. doi: 10.4274/jtgga.galenos.2022.2022-3-3
6. Mahendra V, Clark SL, Suresh MS. Neuropathophysiology of preeclampsia and eclampsia: A review of cerebral hemodynamic principles in hypertensive disorders of pregnancy. Pregnancy Hypertens. 2021; 23: 104-111. doi: 10.1016/j.preghy.2020.10.013
7. Escudero C, Kupka E, Ibanez B, Sandoval H, Troncoso F, Wikstrom AK, et al. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension. 2023; 80(2): 242-256. doi: 10.1161/HYPERTENSIONAHA.122.19408
8. Torres-Torres J, Espino-Y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int J Mol Sci. 2024; 25(14): 7569. doi: 10.3390/ijms25147569
9. Kornacki J, Olejniczak O, Sibiak R, Gutaj P, Wender-Ozegowska E. Pathophysiology of Pre-Eclampsia-Two Theories of the Development of the Disease. Int J Mol Sci. 2023; 25(1): 307. doi: 10.3390/ijms25010307
10. Nzelu D, Biris D, Karampitsakos T, Nicolaides KK, Kametas NA. First trimester serum angiogenic and anti-angiogenic factors in women with chronic hypertension for the prediction of preeclampsia. Am J Obstet Gynecol. 2020; 222(4): 374.e1-374.e9. doi: 10.1016/j.ajog.2019.10.101
11. Taskina ES, Kibalina IV, Mudrov VA. Pathogenetic mechanisms of papilledema development on preeclampsia. Transbaikalian Medical Bulletin. 2024; (3): 100-111. (In Russ.). doi: 10.52485/19986173_2024_3_100
12. Too G, Wen T, Boehme AK, Miller EC, Leffert LR, Attenello FJ, et al. Timing and Risk Factors of Postpartum Stroke. Obstet Gynecol. 2018; 131(1): 70-78. doi: 10.1097/AOG.0000000000002372
13. Liman TG, Bohner G, Heuschmann PU, Endres M, Siebert E. The clinical and radiological spectrum of posterior reversible encephalopathy syndrome: the retrospective Berlin PRES study. J Neurol. 2012; 259(1): 155-64. doi: 10.1007/s00415-011-6152-4
14. Fishel Bartal M, Sibai BM. Eclampsia in the 21st century. Am J Obstet Gynecol. 2022; 226(2S): S1237-S1253. doi: 10.1016/j.ajog.2020.09.037
15. O’Neal MA. Women and the risk of Alzheimer’s disease. Front Glob Womens Health. 2024; 4: 1324522. doi: 10.3389/fgwh.2023.1324522
16. Bergman L, Hastie R, Bokstrom-Rees E, Zetterberg H, Blennow K, Schell S, et al. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstetrics Gynecol. 2022; 227(2): 298.e1-298.e10. doi: 10.1016/j.ajog.2022.02.036
17. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96(1): 17-42. doi: 10.1016/j.neuron.2017.07.030
18. Torres-Vergara P, Rivera R, Escudero C. How Soluble Fms-Like Tyrosine Kinase 1 Could Contribute to BloodBrain Barrier Dysfunction in Preeclampsia? Front Physiol. 2022; 12: 805082. doi: 10.3389/fphys.2021.805082
19. Burwick RM, Togioka BM, Speranza RJ, Gaffney JE, Roberts VHJ, Frias AE, et al. Assessment of blood-brain barrier integrity and neuroinflammation in preeclampsia. Am J Obstet Gynecol. 2019; 221(3): 269.e1-269.e8. doi: 10.1016/j.ajog.2019.06.024
20. Zhang LW, Warrington JP. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats. Front Neurosci. 2016; 10: 561. doi: 10.3389/fnins.2016.00561
21. Johnson AC, Tremble SM, Chan SL, Moseley J, LaMarca B, Nagle KJ, et al. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One. 2014; 9(11): e113670. doi: 10.1371/journal.pone.0113670
22. Siepmann T, Boardman H, Bilderbeck A, Griffanti L, Kenworthy Y, Zwager C, et al. Long-term cerebral white and gray matter changes after preeclampsia. Neurology. 2017; 88(13): 1256-1264. doi: 10.1212/WNL.0000000000003765
23. Bergman L, Zetterberg H, Kaihola H, Hagberg H, Blennow K, Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia – A nested case control study. PLoS One. 2018; 13(5): e0196025. doi: 10.1371/journal.pone.0196025
24. Friis T, Wikstrom AK, Acurio J, Leon J, Zetterberg H, Blennow K, et al. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells. 2022; 11(5): 789. doi: 10.3390/cells11050789
25. Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells. 2023; 12(3): 368. doi: 10.3390/cells12030368
26. Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023; 24(11): 816-834. doi: 10.1038/s41580-023-00631-w
27. Torres-Vergara P, Troncoso F, Acurio J, Kupka E, Bergman L, Wikstrom AK, et al. Dysregulation of vascular endothelial growth factor receptor 2 phosphorylation is associated with disruption of the blood-brain barrier and brain endothelial cell apoptosis induced by plasma from women with preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(9): 166451. doi: 10.1016/j.bbadis.2022.166451
28. Kazantseva VD, Aylarova IM, Melnikov AP. Markers of preeclampsia. Russian Bulletin of the obstetrician-gynecologist. 2022; 22(4): 3138. (In Russ.). doi: 10.17116/rosakush20222204131
29. Sriyanti R, Mose JC, Masrul M, Suharti N. The difference in Maternal serum hypoxia-inducible factors-1α levels between early onset and late-onset preeclampsia. Open Access Maced J Med Sci. 2019; 7(13): 2133-2137. doi: 10.3889/oamjms.2019.601
30. Bergman L, Acurio J, Leon J, Gatu E, Friis T, Nelander M, et al. Preeclampsia and Increased Permeability Over the Blood-Brain Barrier: A Role of Vascular Endothelial Growth Receptor 2. Am J Hypertens. 2021; 34(1): 73-81. doi: 10.1093/ajh/hpaa142
31. Troncoso F, Sandoval H, Ibanez B, Lopez-Espíndola D, Bustos F, Tapia JC, et al. Reduced Brain Cortex Angiogenesis in the Offspring of the Preeclampsia-Like Syndrome. Hypertension. 2023; 80(12): 2559-2571. doi: 10.1161/HYPERTENSIONAHA.123.21756
32. Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int J Mol Sci. 2019; 20(17): 4246. doi: 10.3390/ijms20174246
33. Giannakou K. Prediction of pre-eclampsia. Obstet Med.2021; 14(4): 220-224. doi: 10.1177/1753495X20984015
34. Anto EO, Coall DA, Asiamah EA, Afriyie OO, Addai-Mensah O, Wiafe YA, et al. Placental lesions and differential expression of pro-and anti-angiogenic growth mediators and oxidative DNA damage marker in placentae of Ghanaian suboptimal and optimal health status pregnant women who later developed preeclampsia. PLoS One. 2022; 17(3): e0265717. doi: 10.1371/journal.pone.0265717
35. Jarad M, Kuczynski EA, Morrison J, Viloria-Petit AM, Coomber BL. Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biol. 2017; 18(1): 10. doi: 10.1186/s12860-017-0127-y
36. Bean C, Spencer SK, Pabbidi MR, Szczepanski J, Araji S, Dixon S, et al. Peripheral Anti-Angiogenic Imbalance during Pregnancy Impairs Myogenic Tone and Increases Cerebral Edema in a Rodent Model of HELLP Syndrome. Brain Sci. 2018; 8(12): 216. doi: 10.3390/brainsci8120216
37. Saif J, Ahmad S, Rezai H, Litvinova K, Sparatore A, Alzahrani FA, et al. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol. 2021; 38: 101814. doi: 10.1016/j.redox.2020.101814
38. Sun X, Zhang S, Song H. Quercetin attenuates reduced uterine perfusion pressure – induced hypertension in pregnant rats through regulation of endothelin-1 and endothelin-1 type A receptor. Lipids Health Dis. 2020; 19(1): 180. doi: 10.1186/s12944-020-01357-w
39. Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol. 2020; 319(3): H661-H681. doi: 10.1152/ajpheart.00202.2020
40. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2022; 226: S1019–S1034. doi: 10.1016/j.ajog.2020.10.022
41. McElwain CJ, Tuboly E, McCarthy FP, McCarthy C.M. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows into Future Cardiometabolic Health? Front. Endocrinol. 2020; 11: 655. doi: 10.3389/fendo.2020.00655
42. Matsubara K, Higaki T, Matsubara Y, Nawa A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci. 2015; 16: 4600-4614. doi: 10.3390/ijms16034600
43. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules. 2020; 10: 953. doi: 10.3390/biom10060953
44. Bueno-Pereira TO, Bertozzi-Matheus M, Zampieri GM, Abbade JF, Cavalli RC, Nunes PR, et al. Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia. Antioxidants (Basel). 2022; 11(11): 2111. doi: 10.3390/antiox11112111
45. Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines. 2021; 9: 1756. doi: 10.3390/biomedicines9121756
46. Ziganshina MM, Shilova NV, Khabibullina NR, Novakovsky ME, Nikolaeva MA, Kan NE, et al. Autoantibodies to endothelial antigens in preeclampsia. Obstetrics and gynecology. 2016; 3: 24-31. (In Russ.). doi: 10.18565/aig.2016.3.24-31
47. Wei J, Lin J. Relationship of Polymorphism of Adhesion Molecules VCAM-1 and ICAM-1 with Preeclampsia. Ann Clin Lab Sci. 2020; 50(1): 79-84.
48. Palm K, Cluver C, Langenegger E, Tong S, Walker S, Imberg H, et al. Circulating concentrations of pro-inflammatory cytokines in preeclampsia with varying disease severity. Pregnancy Hypertens. 2024; 38: 101168. doi: 10.1016/j.preghy.2024.101168
49. Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, et al. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep. 2023; 13(1): 2892. doi: 10.1038/s41598-023-29894-1
50. Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, et al. Tight junction proteins at the bloodbrain barrier: far more than claudin-5. Cell Mol Life Sci. 2019; 76(10): 1987-2002. doi: 10.1007/s00018-019-03030-7
51. Kakkar P, Almusined M, Kakkar T, Munyombwe T, Makawa L, Kain K, et al. Circulating Blood-Brain Barrier Proteins for Differentiating Ischaemic Stroke Patients from Stroke Mimics. Biomolecules. 2024; 14(11): 1344. doi: 10.3390/biom14111344
52. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015; 282(21): 4067-79. doi: 10.1111/febs.13412
53. Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood-Brain Barrier. Biol Pharm Bull. 2021; 44(10): 1380-1390. doi: 10.1248/bpb.b21-00408
54. Greene C, Hanley N, Reschke CR, Reddy A, Mae MA, Connolly R, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun. 2022; 13(1): 2003. doi: 10.1038/s41467-022-29657-y
55. Yuan S, Liu KJ, Qi Z. Occludin regulation of bloodbrain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 2020; 6(3): 152-162. doi: 10.4103/bc.bc_29_20
56. Ni Y, Teng T, Li R, Simonyi A, Sun GY, Lee JC. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS One. 2017; 12(2): e0170346. doi: 10.1371/journal.pone.0170346
57. Zhang Y, Ding X, Miao C, Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol. 2019; 19(1): 127. doi: 10.1186/s12871-019-0788-5
58. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY). 2019; 11(23): 11391-11415. doi: 10.18632/aging.102537
59. Kanayasu-Toyoda T, Ishii-Watabe A, Kikuchi Y, Kitagawa H, Suzuki H, et al. Occludin as a functional marker of vascular endothelial cells on tube-forming activity. J Cell Physiol. 2018; 233(2): 1700-1711. doi: 10.1002/jcp.26082
60. Clayton AM, Shao Q, Paauw ND, Giambrone AB, Granger JP, et al. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav Immun. 2018; 70: 376-389. doi: 10.1016/j.bbi.2018.03.028
61. Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochim Biophys Acta Biomembr. 2020; 1862(9): 183298. doi: 10.1016/j.bbamem.2020.183298
62. Armstead WM. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol Clin. 2016; 34(3): 465-77. doi: 10.1016/j.anclin.2016.04.002
63. Jones-Muhammad M, Warrington JP. Cerebral Blood Flow Regulation in Pregnancy, Hypertension, and Hypertensive Disorders of Pregnancy. Brain Sci. 2019; 9(9): 224. doi: 10.3390/brainsci9090224
64. Hammer ES, Cipolla MJ. Cerebrovascular Dysfunction in Preeclamptic Pregnancies. Curr Hypertens Rep. 2015; 17(8): 64. doi: 10.1007/s11906-015-0575-8
65. Poon LC, Nguyen-Hoang L, Smith GN, Bergman L, O’Brien P, Hod M, et al. FIGO Committee on Impact of Pregnancy on Long-term Health and the FIGO Division of Maternal and Newborn Health. Hypertensive disorders of pregnancy and long-term cardiovascular health: FIGO Best Practice Advice. Int J Gynaecol Obstet. 2023; 160(1): 22-34. doi: 10.1002/ijgo.14540
66. van Veen TR, Panerai RB, Haeri S, Singh J, Adusumalli JA, Zeeman GG, et al. Cerebral autoregulation in different hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2015; 212(4): 513.e1-7. doi: 10.1016/j.ajog.2014.11.003
67. Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation. 2019; 26: e12508. doi: 10.1111/micc.12508
68. Wang X, Zhang Q, Ren Y, Liu C, Gao H. Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia. Curr Protein Pept Sci. 2024; 25(7): 527-538. doi: 10.2174/0113892037284176240302052521
69. Timokhina E, Zinin V, Ignatko I, Ibragimova S, Belotserkovtseva L, Strizhakov A. Matrix metalloproteinases MMP-2 and MMP-9 as markers for the prediction of preeclampsia in the first trimester. Ceska Gynekol. 2021; 86(4): 228-235. doi: 10.48095/cccg2021228
70. Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, et al. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol. 2023; 13: 1067661. doi: 10.3389/fimmu.2022.1067661
71. Lin C, He H, Cui N, Ren Z, Zhu M, Khalil RA. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and -9 in hypertensive pregnancy. Am J Physiol Heart Circ Physiol. 2020; 318(1): H165-H180. doi: 10.1152/ajpheart.00602.2019
72. Amakye D, Gyan PO, Santa S, Aryee NA, Adu-Bonsaffoh K, Quaye O, et al. Extracellular matrix metalloproteinases inducer gene polymorphism and reduced serum matrix metalloprotease-2 activity in preeclampsia patients. Exp Biol Med (Maywood). 2023; 248(18): 1550-1555. doi: 10.1177/15353702231199464
73. Rao RS, Sharma P, Padhy M, Sharma R, Gupta R, Bhatacharjee J, et al. Circulatory Maternal Endothelin 1 and Matrix Metalloproteinase-9 Gene Expression in PREECLAMPSIA: A Study in Western Uttar Pradesh, India. J Obstet Gynaecol India. 2023; 73(1): 97-102. doi: 10.1007/s13224-022-01720-0
74. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017; 67(3): 345-351. doi: 10.1007/s12576-017-0525-0
Review
For citations:
Taskina E.S., Tsybikov N.N., Kibalina I.V., Mudrov V.A., Davydov S.O. Pathogenetic mechanisms of blood-brain barrier dysfunction in preeclampsia. Acta Biomedica Scientifica. 2025;10(5):24-37. (In Russ.) https://doi.org/10.29413/ABS.2025-10.5.3

.png)































