Preview

Acta Biomedica Scientifica

Расширенный поиск

Патогенетические механизмы дисфункции гематоэнцефалического барьера при преэклампсии

https://doi.org/10.29413/ABS.2025-10.5.3

Аннотация

Гипертензивные расстройства во время беременности относятся к наиболее сложным и нерешенным проблемам современного акушерства. На сегодняшний день их частота составляет от 12 до 40 % и не имеет тенденции к снижению. Около 60–70 % материнских смертей при гипертензивных расстройствах происходят из-за церебральных осложнений, вследствие развития эклампсии, отека головного мозга и инсульта. Недооценка степени тяжести состояния, неадекватное лечение и запоздалое родоразрешение являются основной причиной материнской заболеваемости и смертности. Несмотря на значительные успехи в понимании основных этапов патогенеза преэклампсии, механизмы повреждения эндотелиальных клеток сосудов головного мозга, а также особенности локальной паракринной и аутокринной регуляции цереброваскулярного кровотока в провоспалительных и гипоксических условиях, остаются актуальными для дальнейшего изучения. Данный литературный обзор посвящен изучению основных механизмов нарушения и/или повреждения гематоэнцефалического барьера при преэклампсии. Проведен систематический анализ современной отечественной и зарубежной литературы с использованием информационных баз eLibrary, Scopus, PubMed, MEDLINE и Cochrane Library за период с января 2010 г. по декабрь 2024 г. Представлена информация о роли фактора роста эндотелия сосудов и системы его рецепторов в увеличении трансклеточного транспорта, а также белков плотных контактов в усилении параклеточного пути. Описаны механизмы нарушения ауторегуляции мозгового кровотока, ведущие к развитию вазогенного отека головного мозга при преэклампсии и эклампсии. Понимание ключевых звеньев патогенеза повреждения гематоэнцефалического барьера при преэклампсии позволит в дальнейшем определить надежные и доступные ранние предикторы развития церебральной дисфункции при данном осложнении беременности.

Об авторах

Е. С. Таскина
ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ
Россия

Таскина Елизавета Сергеевна – кандидат медицинских наук, доцент кафедры офтальмологии

672000, Чита, ул. Горького, 39а, Россия



Н. Н. Цыбиков
ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ
Россия

Цыбиков Намжил Нанзатович – доктор медицинских наук, профессор, заведующий кафедрой патологической физиологии

672000, Чита, ул. Горького, 39а, Россия



И. В. Кибалина
ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ
Россия

Кибалина Ирина Владимировна – доктор медицинских наук, доцент, директор НИИ Молекулярной медицины, заведующий кафедрой нормальной физиологии имени профессора Б.И. Кузника 

672000, Чита, ул. Горького, 39а, Россия



В. А. Мудров
ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ
Россия

Мудров Виктор Андреевич – доктор медицинских наук, доцент, профессор кафедры акушерства и гинекологии педиатрического факультета и факультета дополнительного профессионального образования

672000, Чита, ул. Горького, 39а, Россия



С. О. Давыдов
ФГБОУ ВО «Читинская государственная медицинская академия» Минздрава РФ
Россия

Давыдов Сергей Олегович – доктор медицинских наук, профессор кафедры травматологии и ортопедии

672000, Чита, ул. Горького, 39а, Россия



Список литературы

1. Wu P, Green M, Myers JE. Hypertensive disorders of pregnancy. BMJ. 2023; 381: e071653. doi: 10.1136/bmj-2022-071653

2. Ijomone OK, Osahon IR, Okoh COA, Akingbade GT, Ijomone OM. Neurovascular dysfunctions in hypertensive disorders of pregnancy. Metab Brain Dis. 2021; 36(6): 1109-1117. doi: 10.1007/s11011-021-00710-x

3. Waghamare S, Juneja A, Samanta R, Gaurav A. Posterior reversible encephalopathy syndrome-associated bilateral cortical blindness as presenting feature of severe pre-eclampsia. BMJ Case Rep. 2021; 14(7): e244797. doi: 10.1136/bcr-2021-244797

4. Anton N, Bogdanici CM, Branișteanu DC, Armeanu T, Ilie OD, Doroftei B. A Narrative Review on Neuro-Ophthalmological Manifestations That May Occur during Pregnancy. Life (Basel). 2024; 14(4): 431. doi: 10.3390/life14040431

5. Biswas J, Khatun N, Bandyopadhyay R, Bhattacharya N, Maitra A, Mukherjee S, et al. Optic nerve sheath diameter measurements using ultrasonography to diagnose raised intracranial pressure in preeclampsia: an observational study. J Turk Ger Gynecol Assoc. 2023; 24(1): 5-11. doi: 10.4274/jtgga.galenos.2022.2022-3-3

6. Mahendra V, Clark SL, Suresh MS. Neuropathophysiology of preeclampsia and eclampsia: A review of cerebral hemodynamic principles in hypertensive disorders of pregnancy. Pregnancy Hypertens. 2021; 23: 104-111. doi: 10.1016/j.preghy.2020.10.013

7. Escudero C, Kupka E, Ibanez B, Sandoval H, Troncoso F, Wikstrom AK, et al. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension. 2023; 80(2): 242-256. doi: 10.1161/HYPERTENSIONAHA.122.19408

8. Torres-Torres J, Espino-Y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, et al. A Narrative Review on the Pathophysiology of Preeclampsia. Int J Mol Sci. 2024; 25(14): 7569. doi: 10.3390/ijms25147569

9. Kornacki J, Olejniczak O, Sibiak R, Gutaj P, Wender-Ozegowska E. Pathophysiology of Pre-Eclampsia-Two Theories of the Development of the Disease. Int J Mol Sci. 2023; 25(1): 307. doi: 10.3390/ijms25010307

10. Nzelu D, Biris D, Karampitsakos T, Nicolaides KK, Kametas NA. First trimester serum angiogenic and anti-angiogenic factors in women with chronic hypertension for the prediction of preeclampsia. Am J Obstet Gynecol. 2020; 222(4): 374.e1-374.e9. doi: 10.1016/j.ajog.2019.10.101

11. Таскина Е.С., Кибалина И.В., Мудров В.А. Патогенетические механизмы развития отека диска зрительного нерва на фоне преэклампсии. Забайкальский медицинский вестник. 2024; (3): 100-111. doi: 10.52485/19986173_2024_3_100

12. Too G, Wen T, Boehme AK, Miller EC, Leffert LR, Attenello FJ, et al. Timing and Risk Factors of Postpartum Stroke. Obstet Gynecol. 2018; 131(1): 70-78. doi: 10.1097/AOG.0000000000002372

13. Liman TG, Bohner G, Heuschmann PU, Endres M, Siebert E. The clinical and radiological spectrum of posterior reversible encephalopathy syndrome: the retrospective Berlin PRES study. J Neurol. 2012; 259(1): 155-64. doi: 10.1007/s00415-011-6152-4

14. Fishel Bartal M, Sibai BM. Eclampsia in the 21st century. Am J Obstet Gynecol. 2022; 226(2S): S1237-S1253. doi: 10.1016/j.ajog.2020.09.037

15. O’Neal MA. Women and the risk of Alzheimer’s disease. Front Glob Womens Health. 2024; 4: 1324522. doi: 10.3389/fgwh.2023.1324522

16. Bergman L, Hastie R, Bokstrom-Rees E, Zetterberg H, Blennow K, Schell S, et al. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstetrics Gynecol. 2022; 227(2): 298.e1-298.e10. doi: 10.1016/j.ajog.2022.02.036

17. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017; 96(1): 17-42. doi: 10.1016/j.neuron.2017.07.030

18. Torres-Vergara P, Rivera R, Escudero C. How Soluble Fms-Like Tyrosine Kinase 1 Could Contribute to Blood-Brain Barrier Dysfunction in Preeclampsia? Front Physiol. 2022; 12: 805082. doi: 10.3389/fphys.2021.805082

19. Burwick RM, Togioka BM, Speranza RJ, Gaffney JE, Roberts VHJ, Frias AE, et al. Assessment of blood-brain barrier integrity and neuroinflammation in preeclampsia. Am J Obstet Gynecol. 2019; 221(3): 269.e1-269.e8. doi: 10.1016/j.ajog.2019.06.024

20. Zhang LW, Warrington JP. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats. Front Neurosci. 2016; 10: 561. doi: 10.3389/fnins.2016.00561

21. Johnson AC, Tremble SM, Chan SL, Moseley J, LaMarca B, Nagle KJ, et al. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One. 2014; 9(11): e113670. doi: 10.1371/journal.pone.0113670

22. Siepmann T, Boardman H, Bilderbeck A, Griffanti L, Kenworthy Y, Zwager C, et al. Long-term cerebral white and gray matter changes after preeclampsia. Neurology. 2017; 88(13): 1256-1264. doi: 10.1212/WNL.0000000000003765

23. Bergman L, Zetterberg H, Kaihola H, Hagberg H, Blennow K, Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia – A nested case control study. PLoS One. 2018; 13(5): e0196025. doi: 10.1371/journal.pone.0196025

24. Friis T, Wikstrom AK, Acurio J, Leon J, Zetterberg H, Blennow K, et al. Cerebral Biomarkers and Blood-Brain Barrier Integrity in Preeclampsia. Cells. 2022; 11(5): 789. doi: 10.3390/cells11050789

25. Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells. 2023; 12(3): 368. doi: 10.3390/cells12030368

26. Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023; 24(11): 816-834. doi: 10.1038/s41580-023-00631-w

27. Torres-Vergara P, Troncoso F, Acurio J, Kupka E, Bergman L, Wikstrom AK, et al. Dysregulation of vascular endothelial growth factor receptor 2 phosphorylation is associated with disruption of the blood-brain barrier and brain endothelial cell apoptosis induced by plasma from women with preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(9): 166451. doi: 10.1016/j.bbadis.2022.166451

28. Казанцева В.Д., Айларова И.М., Мельников А.П. Маркеры преэклампсии. Российский вестник акушера-гинеколога. 2022; 22(4): 3138. doi: 10.17116/rosakush20222204131

29. Sriyanti R, Mose JC, Masrul M, Suharti N. The difference in Maternal serum hypoxia-inducible factors-1α levels between early onset and late-onset preeclampsia. Open Access Maced J Med Sci. 2019; 7(13): 2133-2137. doi: 10.3889/oamjms.2019.601

30. Bergman L, Acurio J, Leon J, Gatu E, Friis T, Nelander M, et al. Preeclampsia and Increased Permeability Over the Blood-Brain Barrier: A Role of Vascular Endothelial Growth Receptor 2. Am J Hypertens. 2021; 34(1): 73-81. doi: 10.1093/ajh/hpaa142

31. Troncoso F, Sandoval H, Ibanez B, Lopez-Espíndola D, Bustos F, Tapia JC, et al. Reduced Brain Cortex Angiogenesis in the Offspring of the Preeclampsia-Like Syndrome. Hypertension. 2023; 80(12): 2559-2571. doi: 10.1161/HYPERTENSIONAHA.123.21756

32. Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int J Mol Sci. 2019; 20(17): 4246. doi: 10.3390/ijms20174246

33. Giannakou K. Prediction of pre-eclampsia. Obstet Med.2021; 14(4): 220-224. doi: 10.1177/1753495X20984015

34. Anto EO, Coall DA, Asiamah EA, Afriyie OO, Addai-Mensah O, Wiafe YA, et al. Placental lesions and differential expression of pro-and anti-angiogenic growth mediators and oxidative DNA damage marker in placentae of Ghanaian suboptimal and optimal health status pregnant women who later developed preeclampsia. PLoS One. 2022; 17(3): e0265717. doi: 10.1371/journal.pone.0265717

35. Jarad M, Kuczynski EA, Morrison J, Viloria-Petit AM, Coomber BL. Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biol. 2017; 18(1): 10. doi: 10.1186/s12860-017-0127-y

36. Bean C, Spencer SK, Pabbidi MR, Szczepanski J, Araji S, Dixon S, et al. Peripheral Anti-Angiogenic Imbalance during Pregnancy Impairs Myogenic Tone and Increases Cerebral Edema in a Rodent Model of HELLP Syndrome. Brain Sci. 2018; 8(12): 216. doi: 10.3390/brainsci8120216

37. Saif J, Ahmad S, Rezai H, Litvinova K, Sparatore A, Alzahrani FA, et al. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol. 2021; 38: 101814. doi: 10.1016/j.redox.2020.101814

38. Sun X, Zhang S, Song H. Quercetin attenuates reduced uterine perfusion pressure – induced hypertension in pregnant rats through regulation of endothelin-1 and endothelin-1 type A receptor. Lipids Health Dis. 2020; 19(1): 180. doi: 10.1186/s12944-020-01357-w

39. Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol. 2020; 319(3): H661-H681. doi: 10.1152/ajpheart.00202.2020

40. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2022; 226: S1019–S1034. doi: 10.1016/j.ajog.2020.10.022

41. McElwain CJ, Tuboly E, McCarthy FP, McCarthy C.M. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows into Future Cardiometabolic Health? Front. Endocrinol. 2020; 11: 655. doi: 10.3389/fendo.2020.00655

42. Matsubara K, Higaki T, Matsubara Y, Nawa A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci. 2015; 16: 4600-4614. doi: 10.3390/ijms16034600

43. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules. 2020; 10: 953. doi: 10.3390/biom10060953

44. Bueno-Pereira TO, Bertozzi-Matheus M, Zampieri GM, Abbade JF, Cavalli RC, Nunes PR, et al. Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia. Antioxidants (Basel). 2022; 11(11): 2111. doi: 10.3390/antiox11112111

45. Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines. 2021; 9: 1756. doi: 10.3390/biomedicines9121756

46. Зиганшина М.М., Шилова Н.В., Хасбиуллина Н.Р., Новаковский М.Е., Николаева М.А., Кан Н.Е., и др. Аутоантитела к антигенам эндотелия при преэклампсии. Акушерство и гинекология. 2016; 3: 24-31. doi: 10.18565/aig.2016.3.24-31

47. Wei J, Lin J. Relationship of Polymorphism of Adhesion Molecules VCAM-1 and ICAM-1 with Preeclampsia. Ann Clin Lab Sci. 2020; 50(1): 79-84.

48. Palm K, Cluver C, Langenegger E, Tong S, Walker S, Imberg H, et al. Circulating concentrations of pro-inflammatory cytokines in preeclampsia with varying disease severity. Pregnancy Hypertens. 2024; 38: 101168. doi: 10.1016/j.preghy.2024.101168

49. Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, et al. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep. 2023; 13(1): 2892. doi: 10.1038/s41598-023-29894-1

50. Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, et al. Tight junction proteins at the bloodbrain barrier: far more than claudin-5. Cell Mol Life Sci. 2019; 76(10): 1987-2002. doi: 10.1007/s00018-019-03030-7

51. Kakkar P, Almusined M, Kakkar T, Munyombwe T, Makawa L, Kain K, et al. Circulating Blood-Brain Barrier Proteins for Differentiating Ischaemic Stroke Patients from Stroke Mimics. Biomolecules. 2024; 14(11): 1344. doi: 10.3390/biom14111344

52. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015; 282(21): 4067-79. doi: 10.1111/febs.13412

53. Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood-Brain Barrier. Biol Pharm Bull. 2021; 44(10): 1380-1390. doi: 10.1248/bpb.b21-00408

54. Greene C, Hanley N, Reschke CR, Reddy A, Mae MA, Connolly R, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun. 2022; 13(1): 2003. doi: 10.1038/s41467-022-29657-y

55. Yuan S, Liu KJ, Qi Z. Occludin regulation of bloodbrain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 2020; 6(3): 152-162. doi: 10.4103/bc.bc_29_20

56. Ni Y, Teng T, Li R, Simonyi A, Sun GY, Lee JC. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS One. 2017; 12(2): e0170346. doi: 10.1371/journal.pone.0170346

57. Zhang Y, Ding X, Miao C, Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol. 2019; 19(1): 127. doi: 10.1186/s12871-019-0788-5

58. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway. Aging (Albany NY). 2019; 11(23): 11391-11415. doi: 10.18632/aging.102537

59. Kanayasu-Toyoda T, Ishii-Watabe A, Kikuchi Y, Kitagawa H, Suzuki H, et al. Occludin as a functional marker of vascular endothelial cells on tube-forming activity. J Cell Physiol. 2018; 233(2): 1700-1711. doi: 10.1002/jcp.26082

60. Clayton AM, Shao Q, Paauw ND, Giambrone AB, Granger JP, et al. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav Immun. 2018; 70: 376-389. doi: 10.1016/j.bbi.2018.03.028

61. Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. Biochim Biophys Acta Biomembr. 2020; 1862(9): 183298. doi: 10.1016/j.bbamem.2020.183298

62. Armstead WM. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol Clin. 2016; 34(3): 465-77. doi: 10.1016/j.anclin.2016.04.002

63. Jones-Muhammad M, Warrington JP. Cerebral Blood Flow Regulation in Pregnancy, Hypertension, and Hypertensive Disorders of Pregnancy. Brain Sci. 2019; 9(9): 224. doi: 10.3390/brainsci9090224

64. Hammer ES, Cipolla MJ. Cerebrovascular Dysfunction in Preeclamptic Pregnancies. Curr Hypertens Rep. 2015; 17(8): 64. doi: 10.1007/s11906-015-0575-8

65. Poon LC, Nguyen-Hoang L, Smith GN, Bergman L, O’Brien P, Hod M, et al. FIGO Committee on Impact of Pregnancy on Long-term Health and the FIGO Division of Maternal and Newborn Health. Hypertensive disorders of pregnancy and long-term cardiovascular health: FIGO Best Practice Advice. Int J Gynaecol Obstet. 2023; 160(1): 22-34. doi: 10.1002/ijgo.14540

66. van Veen TR, Panerai RB, Haeri S, Singh J, Adusumalli JA, Zeeman GG, et al. Cerebral autoregulation in different hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2015; 212(4): 513.e1-7. doi: 10.1016/j.ajog.2014.11.003

67. Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation. 2019; 26: e12508. doi: 10.1111/micc.12508

68. Wang X, Zhang Q, Ren Y, Liu C, Gao H. Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia. Curr Protein Pept Sci. 2024; 25(7): 527-538. doi: 10.2174/0113892037284176240302052521

69. Timokhina E, Zinin V, Ignatko I, Ibragimova S, Belotserkovtseva L, Strizhakov A. Matrix metalloproteinases MMP-2 and MMP-9 as markers for the prediction of preeclampsia in the first trimester. Ceska Gynekol. 2021; 86(4): 228-235. doi: 10.48095/cccg2021228

70. Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, et al. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol. 2023; 13: 1067661. doi: 10.3389/fimmu.2022.1067661

71. Lin C, He H, Cui N, Ren Z, Zhu M, Khalil RA. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and -9 in hypertensive pregnancy. Am J Physiol Heart Circ Physiol. 2020; 318(1): H165-H180. doi: 10.1152/ajpheart.00602.2019

72. Amakye D, Gyan PO, Santa S, Aryee NA, Adu-Bonsaffoh K, Quaye O, et al. Extracellular matrix metalloproteinases inducer gene polymorphism and reduced serum matrix metalloprotease-2 activity in preeclampsia patients. Exp Biol Med (Maywood). 2023; 248(18): 1550-1555. doi: 10.1177/15353702231199464

73. Rao RS, Sharma P, Padhy M, Sharma R, Gupta R, Bhatacharjee J, et al. Circulatory Maternal Endothelin 1 and Matrix Metalloproteinase-9 Gene Expression in PREECLAMPSIA: A Study in Western Uttar Pradesh, India. J Obstet Gynaecol India. 2023; 73(1): 97-102. doi: 10.1007/s13224-022-01720-0

74. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017; 67(3): 345-351. doi: 10.1007/s12576-017-0525-0


Рецензия

Для цитирования:


Таскина Е.С., Цыбиков Н.Н., Кибалина И.В., Мудров В.А., Давыдов С.О. Патогенетические механизмы дисфункции гематоэнцефалического барьера при преэклампсии. Acta Biomedica Scientifica. 2025;10(5):24-37. https://doi.org/10.29413/ABS.2025-10.5.3

For citation:


Taskina E.S., Tsybikov N.N., Kibalina I.V., Mudrov V.A., Davydov S.O. Pathogenetic mechanisms of blood-brain barrier dysfunction in preeclampsia. Acta Biomedica Scientifica. 2025;10(5):24-37. (In Russ.) https://doi.org/10.29413/ABS.2025-10.5.3

Просмотров: 67


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)