Clinical and electrocardiographic features and results of genetic testing of children with tachy-bradycardia syndrome
https://doi.org/10.29413/ABS.2025-10.4.8
Abstract
Background. Tachy-bradycardia syndrome in adults is often a result of ischemic changes and is detected in 50 % of cases among all patients with sick sinus syndrome. Tachy-bradycardia syndrome has not been studied in children, the genetic mechanisms have not been studied, and the definition of treatment tactics is difficult due to the need to treat both life-threatening bradycardia and tachyarrhythmias in patients.
The aim. To determine the frequency of occurrence of syncope, palpitations and electrocardiographic markers and to study the frequency and representation of genetic mutation associated with the cardiac channelopathies and cardiomyopathies in children with tachy-bradycardia syndrome.
Materials and methods. Eighteen patients with tachy-bradycardia syndrome aged 1 to 17 years (on average 11.3 + 4.97) without structural heart diseases were examined, who underwent a complete cardiological examination with genetic analysis.
Results. 67 % of children in clinical status had syncope, 56 % had palpitations, 39 % had low tolerance of physical activity. A combination of sinus node dysfunction with atrioventricular block I was detected in 56 % of cases, one child had atrioventricular block of I–II degrees. Antiarrhythmic devices were implanted in 6 children, radiofrequency catheter ablation was performed in one, and 7 patients were treated with antiarrhythmic drugs. Variants in various genes associated with channelopathies, arrhythmias or cardiomyopathies were identified in 78 % of patients.
Conclusion. Only 17 % of children with tachy-bradycardia syndrome have not complains. Tachy-bradycardia syndrome with supraventricular tachyarrhythmias may be the first manifestation of a structural pathology of the heart. A genetic study should be included in the examination of children with tachy-bradycardia syndrome, as it allows to diagnose the genetic mechanisms of progressive cardiac conduction diseases, cardiomyopathies, the early manifestations of which are not always detected in children during a standard examination.
About the Author
E. B. PolyakovaRussian Federation
Ekaterina B. Polyakova – Cand. Sc. (Med), Senior Research Officer at the Department of Pediatric Cardiology and Arrhythmology
Ostrovityanova str., 1/6, Moscow 117997
References
1. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines, and the heart rhythm society. J Am Coll Cardiol. 2019; 74(7): 932–987. doi: 10.1016/j.jacc.2018.10.043
2. Revishvili ASh, Artyukhina EA, Glezer MG, Bazaev VA, Batalov RE, Bokeria LA, et al. 2020 Clinical practice guidelines for Bradyarrhythmias and conduction disorders. Russian Journal of Cardiology. 2021; 26(4): 4448. (In Russ.). doi: 10.15829/1560-4071-2021-4448
3. Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm. 2021; 18(11): 1888-1924. doi: 10.1016/j.hrthm.2021.07.038
4. Federal clinical guidelines for care of children with sick sinus syndrome 2016. (In Russ.). URL: https://cardio-rus.ru/recommendations/all/?page=1
5. Kaplan BM, Langendorf R, Lev M, Pick A. Tachycardia-bradycardia syndrome (so-called “sick sinus syndrome”). Pathology, mechanisms and treatment. Am J Cardiol. 1973; 31(4): 497–508. doi: 10.1016/0002-9149(73)90302-0
6. Semelka M, Gera J, Usman S. Sick sinus syndrome: a review. Am Fam Physician. 2013; 87(10): 691–696.
7. Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation. 2007; 115(14): 1921– 1932. doi: 10.1161/CIRCULATIONAHA.106.616011
8. Dakkak W, Doukky R. Sick Sinus Syndrome. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
9. Polyakova E, Shkolnikova M, Kalinin L. Mechanisms of formation, classification, clinical course and prognosis of “idiopathic” disorders of the sinus node in childhood. Journal of Arrhythmology. 2008; 52: 5-13. (In Russ.).
10. Shkolnikova MA. Life-threatening arrhythmias in children. М.: Neftyanik; 1999. (In Russ.).
11. Bigger Jr JT, Reiffel JA. Sick sinus syndrome. Annu Rev Med. 1979; 30: 91–118. doi: 10.1146/annurev.me.30.020179.00051550
12. Keller KB, Lemberg L. The sick sinus syndrome. Am J Crit Care. 2006; 15(2): 226–229.
13. Padda I, Sebastian SA, Khehra N, Mahtani A, Sethi Y, Panthangi V, et al. Tachy-brady syndrome: Electrophysiology and evolving principles of management. Dis Mon. 2024; 70(2): 101637. doi: 10.1016/j.disamonth.2023.101637
14. Brouillard RP, Bedynek JL Jr, Cheitlin MD, D’Ambrosio U. Tachy-brady syndrome following open heart surgery. Chest. 1973; 63(3): 442-446. doi: 10.1378/chest.63.3.442
15. Namboodiri N, Bohora S, Ajitkumar VK, Tharakan JA. A case of “tachy-brady syndrome”: what is the mechanism? Indian Pacing Electrophysiol J. 2016; 15(5): 261–264. doi: 10.1016/j.ipej.2016.03.001
16. Tse G, Liu T, Li KH, Laxton V, Wong AO, Chan YW, et al. Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review). Int J Mol Med. 2017; 39(3): 519-526. doi: 10.3892/ijmm.2017.2877
17. Polyakova EB, Sckolnikova MA, Voinova VY. Genetic mechanisms of sinus bradycardia and sinus node weakness syndrome. Pediatria. 2018; 97(3): 75–83. (In Russ.). doi: 10.24110/0031-403X-2018-97-3-75-83
18. Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, et al. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol. 2023; 324(3): H259-H278. doi: 10.1152/ajpheart.00618.2022
19. Polyakova EB, Shcherbakova NV. Variant of the TNNI3K gene associated with familial conduction disease and supraventricular tachycardia: a clinical case. Pediatria n.a. G.N. Speransky. 2022; 101(4): 184-189 (In Russ.). doi: 10.24110/0031-403X2022-101-4-184-189
20. Wacker-Gussmann A, Oberhoffer-Fritz R, Westphal DS, Hessling G, Wakai RT, Strasburger JF. The missense variant p.(Gly482Arg) in HCN4 is responsible for fetal tachy-bradycardia syndrome. Heart Rhythm Case Rep. 2020; 6(6): 352-356. doi: 10.1016/j.hrcr.2020.03.003
21. Villarreal-Molina T, García-Ordóñez GP, Reyes-Quintero ÁE, Domínguez-Pérez M, Jacobo-Albavera L, Nava S, et al. Clinical Spectrum of SCN5A Channelopathy in children with primary electrical disease and structurally normal hearts. Genes (Basel). 2021; 13(1): 16. doi: 10.3390/genes13010016
22. Wilde AAM, Amin AS. Clinical Spectrum of SCN5A Mutations: Long QT Syndrome, Brugada Syndrome, and Cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(5): 569-579. doi: 10.1016/j.jacep.2018.03.006
23. Aizawa Y, Fujisawa T, Katsumata Y, Kohsaka S, Kunitomi A, Ohno S, et al. Sex-Dependent Phenotypic Variability of an SCN5A Mutation: Brugada Syndrome and Sick Sinus Syndrome. J Am Heart Assoc. 2018; 7(18): e009387. doi: 10.1161/JAHA.118.009387
24. Zhang R, Wang Y, Yang M, Yang Y, Wang Z, Yin X, et al. Risk stratification for atrial fibrillation and outcomes in tachycardia-bradycardia syndrome: ablation vs. pacing. Front Cardiovasc Med. 2021; 8: 674471. doi: 10.3389/fcvm.2021.674471
25. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017HRS/EHRA/ECAS/ APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. Europace. 2018; 20(1): 157-208. doi: 10.1093/europace/eux275
26. Ковалев И.А., Хамнагадаев И.А., Свинцова Л.И., Кручина Т.К., Садыкова Д.И., Сабирова Д.Р. и др. Суправентрикулярные (наджелудочковые) тахикардии у детей. Педиатрическая фармакология. 2019; 16(3): 133- 143. doi: 10.15690/pf.v16i3.2024
27. Lau CP, Tachapong N, Wang CC, Wang JF, Abe H, Kong CW, et al. Septal pacing for atrial fibrillation suppression evaluation study group. Prospective randomized study to assess the efficacy of site and rate of atrial pacing on long-term progression of atrial fibrillation in sick sinus syndrome: septal pacing for atrial fibrillation suppression evaluation (SAFE) study. Circulation. 2013; 128(7): 687–693. doi: 10.1161/CIRCULATIONAHA.113.001644
28. Zhang S, Yang Y, Xia Y, Gao L, Zhang X, Tse G, et al. Long-term effect of catheter ablation on tachycardia-bradycardia syndrome: evidenced by 10 years follow up. Acta Cardiol. 2020; 75(6): 537-543. doi: 10.1080/00015385.2019.1630055
29. Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing biological pacemakers: design criteria for successful. Circ Arrhythm Electrophysiol. 2021; 14(10): e009957. doi: 10.1161/CIRCEP.121.009957
30. Mesirca P, Alig J, Torrente AG, Müller JC, Marger L, Rollin A, et al. Cardiac arrhythmia induced by genetic silencing of ‘funny’ (f) channels is rescued by GIRK4 inactivation. Nat Commun. 2014; 5: 4664. doi: 10.1038/ncomms5664
31. Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, et al. Pharmacologic approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol. 2021; 61: 757-778. doi: 10.1146/annurev-pharmtox-031120-115815
32. Mesirca P, Bidaud I, Briec F, Evain S, Torrente AG, Le Quang K, et al. G protein-gated IKACh channels as therapeutic targets for treatment of sick sinus syndrome and heart block. Proc Natl Acad Sci USA. 2016; 113(7): E932- 41. doi: 10.1073/pnas.1517181113
33. Bidaud I, Chong ACY, Carcouet A, Waard S, Charpentier F, Ronjat M, et al. Inhibition of G protein-gated K+ channels by tertiapin-Q rescues sinus node dysfunction and atrioventricular conduction in mouse models of primary bradycardia. Sci Rep. 2020; 10(1): 9835. doi: 10.1038/s41598-020-66673-8
34. Podliesna S, Delanne J, Miller L, Tester DJ, Uzunyan M, Yano S, et al. Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys). Hear. Rhythm. 2019; 16(1): 98-105. doi: 10.1016/j.hrthm.2018.07.015
35. Fan LL, Huang H, Jin JY, Li JJ, Chen YQ, Zhao SP, et al. Whole exome sequencing identifies a novel mutation (c.333 + 2T > C) of TNNI3K in a Chinese family with dilated cardiomyopathy and cardiac conduction disease. Gene. 2018; 648: 63-67. doi: 10.1016/j.gene.2018.01.055
36. Liu J, Liu D, Li M, Wu K, Liu N, Zhao C, et al. Identification of a nonsense mutation in TNNI3K associated with cardiac conduction disease. J Clin Lab Anal. 2020; 34(9): e23418. doi: 10.1002/jcla.23418
37. Vagnozzi RJ, Gatto GJ Jr, Kallander LS, Hoffman NE, Mallilankaraman K, et al. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci Transl Med. 2013; 5(207): 207ra141. doi: 10.1126/scitranslmed.3006479
38. Lawhorn BG, Philp J, Graves AP, Shewchuk L, Holt DA, Gatto GJ Jr, et al. GSK114: A selective inhibitor for elucidating the biological role of TNNI3K. Bioorg Med Chem Lett. 2016; 26(14): 3355-3358. doi: 10.1016/j.bmcl.2016.05.033
39. Pang H, Wang N, Chai J, Wang X, Zhang Y, Bi Z, et al. Discovery of novel TNNI3K inhibitor suppresses pyroptosis and apoptosis in murine myocardial infarction injury. Eur J Med Chem. 2020; 197: 112314. doi: 10.1016/j.ejmech.2020.112314
40. Guieu R, Deharo JC, Maille B, Crotti L, Torresani E, Brignole M, Parati G. Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med. 2020; 9(5): 1366. doi: 10.3390/jcm9051366
Review
For citations:
Polyakova E.B. Clinical and electrocardiographic features and results of genetic testing of children with tachy-bradycardia syndrome. Acta Biomedica Scientifica. 2025;10(4):79-91. (In Russ.) https://doi.org/10.29413/ABS.2025-10.4.8