Mitigation of intestinal autofluorescence accumulation in Caenorhabditis elegans treated with plant-based natural products
https://doi.org/10.29413/ABS.2024-9.6.19
Abstract
Introduction. Aging is a complex process related with the gradual diminution in cellular and physiological functions. The geroprotective effect of 10 biologically active substances (BASs) – rutin, squalene, kaempferol, biochanin A, ursolic acid, chlorogenic acid, baicalin, mangiferin, quercetin and trans-cinnamic acid and 5 crude extracts (Ginkgo biloba L., Pulmonaria officinalis L., Scutellaria baicalensis Georgi, Hedysarum neglectum Ledeb. and Panax ginseng C.A. Mey) isolated from medicinal plants of Altai Region of Russia were evaluated for their influence on the accumulation of intestinal autofluorescence material (IAM) using Caenorhabditis elegans model.
The aim of the study. IAM facilitates age-related decline and is a non-intrusive biomarker of senescence. This study assessed the impact of different bioactive substances in reducing the build-up of IAM using C. elegans model.
Materials and methods. Gravid nematodes were synchronized, and then seeded in 96-well plates to develop to L4-stage. Each BAS in 200 µM, 100 µM, 50 µM and 10 µM concentrations and extracts with a tenth, hundredth and thousandth times-dilution were administered to each well in 6 replicates for each treatment group. On incubation days 1, 5, and 15, adult L4 nematodes underwent spectrofluorometric analysis to determine the effect of the BASs and extracts on IAM accumulation.
Results. It was found that quercetin, kaempferol, baicalin, mangiferin, G. biloba and P. officinalis extracts exhibited the most profound inhibition of IAM accumulation compared to the control. It was noteworthy that the 10 µM concentration of mangiferin significantly inhibited IAM accumulation in a manner comparable to the 200 µM of baicalin and 100 µM of quercetin. In addition, the crude extracts of G. biloba and P. officinalis respectively exhibited 2.8- and 1.8-fold decrease in IAM accumulation.
Discussion. The accretion of IAM is inversely proportional to longevity. Thus, the BASs identified in this study to modulate IAM accumulation could serve as important precursors or active ingredients for the pharmacosynthesis of geroprotective drugs in future research.
About the Authors
S. S. SalimonRussian Federation
Saoban S. Salimon – Laboratory Assistant at the Laboratory for Personalized Chemo-Radiotherapy, Student,
Institutsky lane 9, Dolgoprudny 141700
E. I. Marusich
Russian Federation
Elena I. Marusich – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory for Personalized Chemo-Radiotherapy,
Institutsky lane 9, Dolgoprudny 141700
S. V. Leonov
Russian Federation
Sergey V. Leonov – Cand. Sc. (Biol.), Deputy Head of the Laboratory for Personalized Chemo-Radiotherapy, Institutsky lane 9, Dolgoprudny 141700;
Senior Research Officer, Institutskaya str. 3., Pushchino 142290
M. V. Pustovalova
Russian Federation
Margarita V. Pustovalova – Cand. Sc. (Biol.), Head of the Laboratory for Personalized Chemo-Radiotherapy,
Institutsky lane 9, Dolgoprudny 141700
References
1. UN. World Population Prospects 2019 Highlights. 2021. URL: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed: 18.03.2023).
2. Kushwaha SS, Patro N, Patro IK. A sequential study of agerelated lipofuscin accumulation in hippocampus and striate cortex of rats. Ann Neurosci. 2018; 25(4): 223-233. doi: 10.1159/000490908
3. Secci R, Hartmann A, Walter M, Grabe HJ, van der AuweraPalitschka S, Kowald A, et al. Biomarkers of geroprotection and cardiovascular health: An overview of omics studies and established clinical biomarkers in the context of diet. Crit Rev Food Sci Nutr. 2023; 63(15): 2426-2446. doi: 10.1080/10408398.2021.1975638
4. Urits I, Borchart M, Hasegawa M, Kochanski J, Orhurhu V, Viswanath O. An update of current cannabis-based pharmaceuticals in pain medicine. Pain Ther. 2019; 8: 41-51. doi: 10.1007/s40122-019-0114-4
5. Faskhutdinova ER, Sukhikh AS, Le VM, Minina VI, Khelef MEA, Loseva AI. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. Foods Raw Mater. 2022; 10(2): 340-352.
6. Komura T, Yamanaka M, Nishimura K, Hara K, Nishikawa Y. Autofluorescence as a noninvasive biomarker of senescence and advanced glycation end products in Caenorhabditis elegans. npj. Aging Mech Dis. 2021; 7(1): 12. doi: 10.1038/s41514-021-00061-y
7. Höhn A, Grune T. Lipofuscin: Formation, effects and role of macroautophagy. Redox Biol. 2013; 1(1): 140-144. doi: 10.1016/j.redox.2013.01.006
8. Pincus Z, Mazer TC, Slack FJ. Autofluorescence as a measure of senescence in C. elegans: Look to red, not blue or green. Aging (Albany NY). 2016; 8(5): 889. doi: 10.18632/aging.100936
9. Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, et al. Alternative animal models of aging research. Front M Biosci. 2021; 8: 660959. doi: 10.3389/fmolb.2021.660959
10. Teuscher AC, Ewald CY. Overcoming autofluorescence to assess GFP expression during normal physiology and aging in Caenorhabditis elegans. Bio Protoc. 2018; 8(14): e2940-e2940. doi: 10.21769/BioProtoc.2940
11. Jiang S, Deng N, Zheng B, Li T, Liu RH. Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food Funct. 2021; 12(10): 4471-4483. doi: 10.1039/d0fo02974b
12. Liu Y, Zhou Z, Yin L, Zhu M, Wang F, Zhang L, et al. Tangeretin promotes lifespan associated with insulin/insulin‐like growth factor‐1 signaling pathway and heat resistance in Caenorhabditis elegans. Bio Factors. 2022; 48(2): 442-453. doi: 10.1002/biof.1788
13. Nixon RA. The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. Biochim Biophys Acta (BBA) Proteins Proteomics. 2020; 1868(9): 140443. doi: 10.1016/j.bbapap.2020.140443
14. Sugawara T, Sakamoto K. Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin-like and p38-MAPK signalling. PLoS One. 2020; 15(9): e0238528. doi: 10.1371/journal.pone.0238528
15. Havermann S, Humpf H-U, Wätjen W. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF16. Fitoterapia. 2016; 113: 123-127. doi: 10.1016/j.fitote.2016.06.018
16. Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR. Chlorogenic acid extends the lifespan of Caenorhabditis elegans via insulin/IGF-1 signaling pathway. J Gerontol Ser A. 2017; 72(4): 464-472. doi: 10.1093/gerona/glw105
17. Fedorova AM, Dyshlyuk LS, Milentyeva IS, Loseva AI, Neverova OA, Khelef MEA. Geroprotective activity of trans-cinnamic acid isolated from the Baikal skullcap (Scutellaria baicalensis). Food Processing: Techniques and Technology. 2022; 52(3): 582-591. (In Russ.).
18. Wang J, Chen X, Bai W, Wang Z, Xiao W, Zhu J. Study on mechanism of Ginkgo biloba L. leaves for the treatment of neurodegenerative diseases based on network pharmacology. Neurochem Res. 2021; 46(7): 1881-1894. doi: 10.1007/s11064-021-03315-z
19. Sun J, Zhong X, Sun D, Xu L, Shi L, Sui J, et al. Anti-aging effects of polysaccharides from ginseng extract residues in Caenorhabditis elegans. Int J Biol Macro M. 2023; 225: 1072-1084. doi: 10.1016/j.ijbiomac.2022.11.168
20. Moreno-García A, Kun A, Calero O, Medina M, Calero M. An overview of the role of lipofuscin in age-related neurodegeneration. Front Neurosci. 2018; 12: 464. doi: 10.3389/fnins.2018.00464
21. Kampkötter A, Nkwonkam CG, Zurawski RF, Timpel C, Chovolou Y, Wätjen W, et al. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology. 2007; 234(1-2): 113-123. doi: 10.1016/j.tox.2007.02.006
22. Jiang X, Yu J, Wang X, Ge J, Li N. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy. Diabetes Metab Syndr Obes Targets Ther. 2019; 12: 827-839. doi: 10.2147/DMSO.S195456
23. Liu H, Zhou W, Guo L, Zhang H, Guan L, Yan X, et al. Quercetin protects against palmitate-induced pancreatic β-cell apoptosis by restoring lysosomal function and autophagic flux. J Nutr Biochem. 2022; 107: 109060. doi: 10.1016/j.jnutbio.2022.109060
24. Chen Q, Liu M, Yu H, Li J, Wang S, Zhang Y, et al. Scutellaria baicalensis regulates FFA metabolism to ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. J Nat Med. 2018; 72: 655-666. doi: 10.1007/s11418-018-1199-5
25. Perez CA, Wei Y, Guo M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J Inorg Biochem. 2009; 103(3): 326-332. doi: 10.1016/j.jinorgbio.2008.11.003
26. Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017; 16(1): 1-17. doi: 10.1186/s12944-017-0449-y
27. Zhou C, Li G, Li Y, Gong L, Huang Y, Shi Z, et al. A highthroughput metabolomic approach to explore the regulatory effect of mangiferin on metabolic network disturbances of hyperlipidemia rats. M Biosyst. 2015; 11(2): 418-433. doi: 10.1039/c4mb00421c
28. Rauthan M, Pilon M. The mevalonate pathway in C. elegans. Lipids Health Dis. 2011; 10: 243. doi: 10.1186/1476-511X-10-243
29. Houghton PJ, Mukherjee PK. Evaluation of herbal medicinal products: Perspectives on quality, safety and efficacy. London: Pharmaceutical Press; 2009.
30. Yu X, Li H, Lin D, Guo W, Xu Z, Wang L, et al. Ginsenoside prolongs the lifespan of C. elegans via lipid metabolism and activating the stress response signaling pathway. Int J M Sci. 2021; 22(18): 9668. doi: 10.3390/ijms22189668
Review
For citations:
Salimon S.S., Marusich E.I., Leonov S.V., Pustovalova M.V. Mitigation of intestinal autofluorescence accumulation in Caenorhabditis elegans treated with plant-based natural products. Acta Biomedica Scientifica. 2024;9(6):184-194. (In Russ.) https://doi.org/10.29413/ABS.2024-9.6.19