Preview

Acta Biomedica Scientifica

Advanced search

Assessment of the pathways of the visual analyzer using diffuse tensor MRI and optical coherence tomography in patients with multiple sclerosis

https://doi.org/10.29413/ABS.2024-9.6.16

Abstract

Early diagnosis of  ophthalmic manifestations of  multiple sclerosis (MS) is  quite complicated.

The aim. To assess the degree of impairment of the pathways of the visual analyzer in patients with MS, taking into account the data of structural optical coherence tomography and magnetic resonance imaging.

Material and methods. Four groups of  patients were analyzed: three groups of MS patients with various changes in visual functions and a group of somatically healthy patients. Structural changes of  the  optic nerve were assessed according to OCT and magnetic resonance studies.

Results. A decrease in the thickness of the nerve fiber layer was found in groups 2 and 3 in the lower temporal sector – to 29–44 μm, in the upper temporal sector – to 30–33 μm, in the lower nasal sectors – to 11–18 μm. The data of groups 1 and 4 were comparable (p = 0.22). MR tractography in  groups  2 and  3 determined the  MRI picture of  rarefaction and signs of interruption of the pathways, respectively. MR spectroscopy at the level of the visual cortex revealed: a decrease in NAA/Cho in groups 2 and 3 by 13–23 % (the  data of  groups  1 and  4 were comparable); a  decrease in  NAA/Cr by  17  % in group 1, and by 23 % in groups 2 and 3, a decrease in Cho/Cr by 21 % in group 1, by 13.4 % – in group 2 and by 8 % – in group 3. At  the  level of  visual radiance, a  decrease was observed: NAA/Cho by  31.5  %  – in  group  1, by  39.5  % – in  group  2 and  by  50  % – in  group  3; NAA/Cr by  21  % – in group 1, by 32–35 % – in groups 2 and 3, and an excess of Cho/Cr by an average of 22 % in all groups.

Conclusion. The  data obtained indicate degenerative changes in  the  pathways of the visual analyzer not only in MS patients with partial optic nerve atrophy, but also in patients with no complaints and clinically pronounced visual impairment.

About the Authors

L. V. Shvets
Irkutsk Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Irkutsk State Medical University
Russian Federation

Lidiya V. Shvets – Ophthalmologist, Lermontova str. 337, Irkutsk 664033;

Teaching Assistant at the Department of Eye Diseases, Krasnogo Vosstaniya str. 1, Irkutsk 664003



T. N. Iureva
Irkutsk Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Irkutsk State Medical University; Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education
Russian Federation

Tatiana N. Iureva – Dr. Sc. (Med.), Professor, Deputy Director for Science, Lermontova str. 337, Irkutsk 664033;

Professor at the Department of Eye Diseases, Krasnogo Vosstaniya str. 1, Irkutsk 664003;

Professor at the Department of Ophthalmology, Yubileyniy 100, Irkutsk 664049



References

1. Bisaga GN, Gaikova ON, Onishchenko LS, Chikurov AA, Pozdnyakov AV Multiple sclerosis: From morphology to pathogenesis. St. Petersburg; 2015. (In Russ.).

2. Gusev EI, Boyko AN. Multiple sclerosis: Scientific and practical guide. Moscow: Zdorovye cheloveka; 2020. (In Russ.).

3. Multiple sclerosis: Clinical guidelines. Moscow; 2022. (In Russ.)

4. Pazhigova ZB, Karpov SM, Shevchenko PP, Burnusus NI. Prevalence of multiple sclerosis in the world (review article). International Journal of Experimental Education. 2014; 1-2: 78-82. (In Russ.).

5. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50(1): 121-127. doi: 10.1002/ana.1032

6. Eliseeva EK, Neroev VV, Zueva MV, Tsapenko IV, Zakharova MN. Optic neuritis with multiple sclerosis (review of literature and own data). Point of view. East-West. 2018; (2): 112-115. (In Russ.).

7. Zaynutdinova GH, Babushkin AE. Ophthalmological aspects of multiple sclerosis. Point of view. East-West. 2021; (1): 91-96. (In Russ.).

8. McNamara D. Revised ‘McDonald criteria’ expected to speed the diagnosis of multiple sclerosis. ScienceDaily. 2017 Dec 22. URL: https://www.sciencedaily.com/releases/2017/12/171222111412.htm [date of access: 25.04.2024].

9. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17(2): 162-173. doi: 10.1016/S1474-4422(17)30470-2

10. Sharma R, Gaillard F, Bell D. McDonald diagnostic criteria for multiple sclerosis. Radiopaedia.org. 2018. doi: 10.53347/rID-57578

11. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983; 33(11): 1444-1452.

12. Trufanov GE, Litvinenko IV, Tarumov DA. Magnetic resonance spectroscopy: A tutorial. Kazan: Buk; 2018. (In Russ.).

13. Prokudin MYu, Odinak MM, Litvinenko IV, Martynov BV, Zheleznyak IS, Lytkin MV, et al. Magnetic resonance spectroscopy in brain gliomas: Biological markers. Doctor.Ru. 2018; 1(145): 10-15. (In Russ.).

14. Kallenbach K, Frederiksen J. Optical coherence tomography in optic neuritis and multiple sclerosis: A review. Eur J Neurol. 2007; 14(8): 841-849. doi: 10.1111/j.1468-1331.2007.01736.x.

15. Solomatova ES, Shnaider NA, Molgachev AA, Dmitrenko DV, Strotskaya IG. Magnetic resonance spectroscopy of the brain in the diagnosis of temporal lobe epilepsy. Neurology, Neuropsychiatry, Psychosomatics. 2018; (Special Issue 1): 51-55. (In Russ.). doi: 10.14412/2074-2711-2018-1S-51-55

16. Kharuzhyk SA, Zhavrid EA, Sachivko NV. Diffusionweighted magnetic resonance imaging with apparent diffusion coefficient measurement for monitoring and early tumor response prediction during lymphoma chemotherapy. Medical Visualization. 2015; (5): 83-99. (In Russ.).

17. Kousi E, Tsougos I, Eftychia K. Proton magnetic resonance spectroscopy of the central nervous system. Novel Frontiers of Advanced Neuroimaging. InTech; 2013. doi: 10.5772/53892

18. Kasimova MS, Khamraeva GH. MR-spectroscopy in the diagnosis of optical neuritis on the background of multiple sclerosis (literature review). Modern Technologies in Ophthalmology. 2019; 3(28): 62-66. (In Russ.).

19. Fursova AZh, Zubkova MYu, Vasilyeva MA, Gamza YuA, Malkova NA, Prokaeva AI, et al. Modern diagnostic potentials of studying structural and functional changes of the retina and the optic nerve in multiple sclerosis patients. Russian Ophthalmological Journal. 2023; 16(4): 97-104. (In Russ.). doi: 10.21516/2072-0076-2023-16-4-97-104

20. Pardini M, Botzkowski D, Müller S, Vehoff J, Kuhle J, Ruberte E, et al. The association between retinal nerve fibre layer thickness and N-acetyl aspartate levels in multiple sclerosis brain normal-appearing white matter: A longitudinal study using magnetic resonance spectroscopy and optical coherence tomography. Eur J Neurol. 2016; 23(12): 1769-1774. doi: 10.1111/ene.13116

21. Tkachenko NV, Belekhova SG, Kolesnikova ET, Turgel VA, Semenyuta VV. Analysis of optical coherence tomography of the optic nerve head and of the retinal macular area in multiple sclerosis patients. Ophthalmology Reports. 2022; 15(1): 15-28. (In Russ.). doi: 10.17816/OV105639

22. Paul F, Calabresi PA, Barkhof F, Green AJ, Kardon R, SastreGarriga J, et al. Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study. Ann Clin Transl Neurol. 2021; 8(12): 2235-2251. doi: 10.1002/acn3.51473


Review

For citations:


Shvets L.V., Iureva T.N. Assessment of the pathways of the visual analyzer using diffuse tensor MRI and optical coherence tomography in patients with multiple sclerosis. Acta Biomedica Scientifica. 2024;9(6):156-165. (In Russ.) https://doi.org/10.29413/ABS.2024-9.6.16

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)