Preview

Acta Biomedica Scientifica

Advanced search

New strategies for the treatment of infections caused by biofilm-producing Klebsiella pneumoniae

https://doi.org/10.29413/ABS.2024-9.6.7

Abstract

Treatment of Klebsiella pneumoniae infections is becoming increasingly challenging due to their multiple resistance to current antimicrobials. The ability to form biofilms is a critical virulence feature of K. pneumoniae. Biofilms are complex bacterial communities consisting of  one or  more species embedded in  an  extracellular matrix of  proteins, carbohydrates, and  DNA. Inhibition and  killing of  biofilm-producing strains with  antibiotics often requires higher concentrations than those required to suppress planktonic bacteria. Dosage increases can vary significantly depending on many of their virulence factors. Therefore, alternative treatments have been sought recently. In this review, the literature was analyzed to gain insight into the major virulence factors with an emphasis on the role of biofilms in enhancing antimicrobial resistance, highlighting the importance of this mechanism for bacterial adaptation. The literature search was conducted using the electronic information resources PubMed, Google Scholar and eLibrary. The search depth was limited from 2000 to the present, the  share of  literature for  the  last 5  years was  63  %. The  keywords used in the search were: Klebsiella pneumoniae, biofilm, virulence factors, infection treatment, combination therapy. The concepts of the difference between the pathotypes of K. pneumoniae, hypervirulent and classical, and their relationship with biofilm formation are revealed. The composition and regulation of biofilm are characterized, some factors influencing the  structure of  biofilm are  briefly described. Some new combination strategies for the treatment of infections caused by biofilm-forming K.  pneumoniae are also presented. Understanding the  effect of  antimicrobials on biofilms is of paramount importance for clinical practice due to the increased level of resistance and the spread of resistance among infectious agents.

About the Authors

T. V. Fadeeva
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Tatiana  V. Fadeeva – Dr.  Sc. (Biol.), Leading Research Officer at  the  Laboratory of  Cell Technologies and  Regenerative Medicine, 

Bortsov Revolyutsii str. 1, Irkutsk 664003



A. V. Nevezhina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Anna V. Nevezhina – Junior Research Officer at the Laboratory of Cell Technologies and Regenerative Medicine, 

Bortsov Revolyutsii str. 1, Irkutsk 664003



References

1. Chebotar IV, Bocharova YuA, Podoprigora IV, Shagin DA. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Clinical Microbiology and Antimicrobial Chemotherapy. 2020; 22(1): 4-19. (In Russ.)

2. Edelstein MV, Shaidullina ER, Ivanchik NV, Dekhnich AV, Mikotina AV, Skleenova EYu, et al. Antimicrobial resistance of clinical isolates of Klebsiella pneumoniae and Escherichia coli in Russian hospitals: Results of a multicenter epidemiological study. Clinical Microbiology and Antimicrobial Chemotherapy. 2024; 26(1): 67-78. (In Russ.). doi: 10.36488/cmac.2024.1.67-78

3. Paudel S, Adhikari P, Singh KCS, Shrestha UT, Shah PK. Antibiogram and biofilm development among Klebsiella pneumoniae from clinical isolates. Tribhuvan University Journal of Microbiology. 2021; 8(1): 83-92. doi: 10.3126/tujm.v8i1.41198

4. Al-Ani I. Identification and characterization of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates in Baghdad. Mustansiriya Medical Journal. 2017; 16: 11-18.

5. Guo Y, Cen Z, Zou Y, Fang X, Li T, Wang J, et al. Wholegenome sequence of Klebsiella pneumonia strain LCT-KP214. J Bacteriol. 2012; 194(12): 3281. doi: 10.1128/JB.00531-12

6. Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018; 8: 4. doi: 10.3389/fcimb.2018.00004

7. Karami-Zarandi M, Rahdar HA, Esmaeili H, Ranjbar R. Klebsiella pneumoniae: An update on antibiotic resistance mechanisms. Fut Microbiol. 2023; 18(1): 65-81. doi: 10.2217/fmb-2022-0097

8. Shamina OV, Samoylova EA, Novikova IE, Lazareva AV. Klebsiella pneumoniae: Microbiological characterization, antimicrobial resistance, and virulence. Russian Pediatric Journal. 2020; 23(3): 191-197. (In Russ.). doi: 10.18821/1560-9561-2020-23-3-191-197

9. Ageevets VA, Ageevets IV, Sidorenko SV. Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae. Russian Journal of Infection and Immunity. 22022; 12(3): 450-460. (In Russ.). doi: 10.15789/2220-7619-COM-1825

10. Kong Q, Beanan JM, Olson R, Macdonald U, Shon AS, Metzger DJ, et al. Biofilm formed by a hypervirulent (hypermucoviscous) variant of Klebsiella pneumoniae does not enhance serum resistance or survival in an in vivo abscess model. Virulence. 2012; 3(3): 309-318. doi: 10.4161/viru.20383 11. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019; 32(3): e00001-e00019. doi: 10.1128/ cmr.00001-19

11. Liu C, Guo J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: Antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann Clin Microbiol Antimicrob. 2019; 18(1): 4. doi: 10.1186/s12941-018-0302-9

12. Sergevnin VI, Kudryavtseva LG, Pegyshina OG. Frequency of isolation of hypervirulent Klebsiella pneumoniae in cardiac surgical hospital patients. Epidemiology and Infectious Diseases. 2024; 29(2): 114-120, (In Russ.). doi: 10.51620/3034-1981-2024-29-2-114-120

13. Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular epidemiology of hypervirulent K. pneumoniae and problems of health-care associated infections. Bull Exp Biol Med. 2022; 172(5): 507-522. doi: 10.1007/s10517-022-05424-3

14. Dan B, Dai H, Zhou D, Tong H, Zhu M. Relationship between drug resistance characteristics and biofilm formation in Klebsiella pneumoniae strains. Infect Drug Resist. 2023; 16: 985- 998. doi: 10.2147/IDR.S396609

15. Ye T, Fung K, Lee I, Ko T, Lin C, Wong C, et al. Klebsiella pneumoniae K2 capsular polysaccharide degradation by a bacteriophage depolymerase does not require trimer formation. mBio. 2024; 15: e03519-23. doi: 10.1128/mbio.03519-23

16. Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol. 2023; 14: 1238482. doi: 10.3389/fmicb.2023.1238482

17. Li L, Gao X, Li M, Liu Y, Ma J, Wang X, et al. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol. 2024; 14: 1324895. doi: 10.3389/fcimb.2024.1324895

18. Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, et al. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front Cell Infect Microbiol. 2022; 12: 877995. doi: 10.3389/fcimb.2022.877995

19. Riwu KHP, Effendi MH, Rantam FA, Khairullah AR, Widodo A. A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet World. 2022; 15(9): 2172-2179. doi: 10.14202/vetworld.2022.2172-2179

20. Gao X, Wang H, Wu Z, Sun P, Yu W, Chen D, et al. The characteristic of biofilm formation in ESBL-producing K. pneumoniae isolates. Can J Infect Dis Med Microbiol. 2024; 2024: 1802115. doi: 10.1155/2024/1802115

21. Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, et al. Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem. 2007; 282(21): 15569-15577. doi: 10.1074/jbc.M701454200

22. Karampatakis T, Tsergouli K, Behzadi P. Carbapenemresistant Klebsiella pneumoniae: Virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics. 2023; 12(2): 234. doi: 10.3390/antibiotics12020234

23. Markelova NN, Semenova EF. Possible ways to overcome antibiotic resistance of nosocomial pathogens Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. Antibiotics and Chemotherapy. 2018; 63(11-12): 45-54. (In Russ.). doi: 10.24411/0235-2990-2018-00058

24. Isler B, Aslan AT, Akova M, Harris P, Paterson DL. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections. Expert Rev Anti Infect Ther. 2022; 20(11): 1389-1400. doi: 10.1080/14787210.2022.2128764

25. Skachkova TS, Shipulina OYu, Shipulin GA, Shelenkov AA, Yanushevich YuG, Mikhaylova YuV, et al. Characterization of genetic diversity of the Klebsiella pneumoniae strains in a Moscow tertiary care center using next-generation sequencing. Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21(1): 69-74. (In Russ.).

26. Abaturov AE, Kryuchko TA. Dispersion of bacterial biofilm and chronization of respiratory tract infection. Zdorov’e Rebenka. 2019; 14(5): 337-342. (In Russ.). doi: 10.22141/2224-0551.14.5.2019.177411

27. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019; 16(8): 76. doi: 10.1186/s13756-019-0533-3

28. Khaitovich AB, Mureiko EA. Quorum sensing of microorganisms as a factor of pathogenicity. Tavricheskiy medico-biologicheskiy vestnik. 2018; 21(1): 214-220. (In Russ.).

29. Karimi K, Zarei O, Sedighi P, Taheri M, Doosti-Irani A, Shokoohizadeh L. Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumoniae. Int J Microbiol. 2021; 2021: 5573388. doi: 10.1155/2021/5573388

30. Ignatova NI, Alexandrova NA, Zaslavskaya MI, Abramycheva DV. Evaluation of the influence of culturing on the intensity of biofilm formation by Klebsiella pneumoniae strains. Russian Clinical Laboratory Diagnostics. 2020; 65(8): 512-515. (In Russ.).

31. Singla S, Harjai K, Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot. 2013; 66(2): 61-66. doi: 10.1038/ja.2012.101

32. Khryanin AA, Knorring GY. Modern concepts of microbial biofilms. Pharmateca. 2020; 6: 34-42. (In Russ.). doi: 10.18565/pharmateca.2020.6.34-42

33. Guilhen C, Miquel S, Charbonnel N, Joseph L, Carrier G, Forestier C, et al. Colonization and immune modulation properties of Klebsiella pneumoniae biofilm-dispersed cells. NPJ Biofilms Microbiomes. 2019; 5(1): 25. doi: 10.1038/s41522-019-0098-1

34. Lathamani K, Subbannayya K. Biofilm formation and its correlation with ESBL production in Klebsiella pneumoniae isolated from a tertiary care hospital. Int J Sci Res. 2016; 5(2):1059- 1062. doi: 10.21275/v5i2.nov161102

35. Gharrah MM, Mostafa El-Mahdy A, Barwa RF. Association between virulence factors and extended spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates. Interdiscip Perspect Infect Dis. 2017; 2017: 7279830. doi: 10.1155/2017/7279830

36. Sabença C, Costa E, Sousa S, Barros L, Oliveira A, Ramos S, et al. Evaluation of the ability to form biofilms in KPC-producing and ESBL-producing Klebsiella pneumoniae isolated from clinical samples. Antibiotics (Basel). 2023; 12(7): 1143. doi: 10.3390/antibiotics12071143

37. Wen Z, Chen Y, Liu T, Han J, Jiang Y, Zhang K. Predicting antibiotic tolerance in hvKp and cKp respiratory infections through biofilm formation analysis and its resistance implications. Infect Drug Res. 2024; 17: 1529-1537. doi: 10.2147/IDR.S449712

38. Latha R, Aravind S, Kavitha K, Thiyagarajan S, Pramodhini S, Aboobacker PA. Unraveling hypervirulent Klebsiella pneumoniae (hvKp): Leveraging the Maga gene as a biomarker for strong biofilm forming hvKp. Research Sq. 2024. doi: 10.21203/rs.3.rs-4190645/v1

39. Nemchenko UM, Kungurtsevа EA, Savelkaeva MV, Grigorova EV, Ivanova EI, Tunik TV, et al. Microbiocenosis of colon and ability to biofilm formation of strains Klebsiella spp. In children with functional gastrointestinal disorders. Experimental and Clinical Gastroenterology. 2020; 4(176): 59-64. (In Russ.).

40. Pawar PS, Pawar SK, Patil SR, Patil HV, Mane PM. Comparative study of biofilm and non-biofilm producing Klebsiella pneumoniae with special reference to metallo-beta-lactamase production. J Pure Appl Microbiol. 2024; 18(2): 1025-1031. doi: 10.22207/JPAM.18.2.17

41. Shastry RP, Bajire SK, Banerjee S, Shastry KP, Hameed A. Association between biofilm formation and extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolated from fresh fruits and vegetables. Curr Microbiol. 2024; 81(7): 206. doi: 10.1007/s00284-024-03723-8

42. El Naggar NM, Shawky RM, Serry FME, Emara M. Investigating the relationship between carbapenemase production and biofilm formation in Klebsiella pneumoniae clinical isolates. BMC Res Notes. 2024; 17(1): 49. doi: 10.1186/s13104-024-06708-9

43. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018; 9(1): 522-554. doi: 10.1080/21505594.2017.1313372

44. Penesyan A, Paulsen IT, Gillings MR, Kjelleberg S, Manefield MJ. Secondary effects of antibiotics on microbial biofilms. Front Microbiol. 2020; 11: 2109. doi: 10.3389/fmicb.2020.02109

45. Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol. 2012; 7(9): 1061-1072. doi: 10.2217/fmb.12.76

46. Ermolenko ZM, Slukin PV, Fursova NK. Microbial biofilms in urology: Clinical significance and control of associated infections. Bacteriology. 2021; 6(2): 47-61. (In Russ.). doi: 10.20953/2500-1027-2021-2-47-61

47. Ribeiro SM, Cardoso MH, Cândido Ede S, Franco OL. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms. Future Microbiol. 2016; 11(4): 527-538. doi: 10.2217/fmb.16.7

48. Smolyaninova DS, Batishcheva GA, Gabbasova NV, Goncharova NYu. Structure of antibiotic resistance of Klebsiella pneumoniae strains in patients with urolithiasis. Modern Problems of Science and Education. 2022; 21(S2): 109-109. (In Russ.).

49. Prajapati JD, Kleinekathöfer U, Winterhalter M. How to enter a bacterium: Bacterial porins and the permeation of antibiotics. Chem Rev. 2021; 121(9): 5158-5192. doi: 10.1021/acs.chemrev.0c01213

50. Tapalski DV, Petrovskaya TA. Bactericidal activity of antibiotic combinations against extensively drug resistant strains of Klebsiella pneumoniae with resistance to colistin. Meditsinskie novosti. 2020; 2(305): 63-66. (In Russ.).

51. Bayatinejad G, Salehi M, Beigverdi R, Halimi S, Emaneini M, Jabalameli F. In vitro antibiotic combinations of colistin, meropenem, amikacin, and amoxicillin/clavulanate against multidrug-resistant Klebsiella pneumonia isolated from patients with ventilator-associated pneumonia. BMC Microbiol. 2023; 23(1): 298. doi: 10.1186/s12866-023-03039-w

52. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000; 44(7): 1818-1824. doi: 10.1128/AAC.44.7.1818-1824.2000

53. Moshynets OV, Baranovskyi TP, Cameron S, Iungin OS, Pokholenko I, Jerdan R, et al. Azithromycin possesses biofilm-inhibitory activity and potentiates non-bactericidal colistin methanesulfonate (CMS) and polymyxin B against Klebsiella pneumonia. PLoS One. 2022; 17(7): e0270983. doi: 10.1371/journal.pone.0270983

54. Cadavid E, Echeverri F. The search for natural inhibitors of biofilm formation and the activity of the autoinductor C6-AHL in Klebsiella pneumoniae ATCC 13884. Biomolecules. 2019; 9(2): 49. doi: 10.3390/biom9020049

55. Bisso Ndezo B, Tokam Kuaté CR, Dzoyem JP. Synergistic antibiofilm efficacy of thymol and piperine in combination with three aminoglycoside antibiotics against Klebsiella pneumoniae biofilms. Can J Infect Dis Med Microbiol. 2021; 2021: 7029944. doi: 10.1155/2021/7029944

56. Shaposhnikov LA, Tishkov VI, Pometun AA. Lactobacilli and Klebsiella: Two opposites in the fight for the health of the body. Uspekhi Biologicheskoi Khimii. 2024; 64: 143-178. (In Russ.).

57. Singh AK, Yadav S, Chauhan BS, Nandy N, Singh R, Neogi K, et al. Classification of clinical isolates of Klebsiella pneumoniae based on their in vitro biofilm forming capabilities and elucidation of the biofilm matrix chemistry with special reference to the protein content. Front Microbiol. 2019; 10: 669. doi: 10.3389/fmicb

58. Nguyen HK, Duke MM, Grayton QE, Broberg CA, Schoenfisch MH. Impact of nitric oxide donors on capsule, biofilm, and resistance profiles of Klebsiella pneumoniae. Int J Antimicrob Agents. 2024; 107339. doi: 10.1016/j.ijantimicag.2024.107339

59. Arnaudova KSh, Astafieva OV, Zharkova ZV, Yakimets MV. Influence of bacteriophages on functioning of bacterial biofilms. New Impulses of Development: Issues of Scientific Research. 2020; (6-2): 136-138. (In Russ.).

60. Chhibber S, Gondil VS, Sharma S, Kumar M, Wangoo N, Sharma RK. A novel approach for combating Klebsiella pneumoniae biofilm using histidine functionalized silver nanoparticles. Front Microbiol. 2017; 8: 1104. doi: 10.3389/fmicb.2017.01104

61. Sharma RP, Raut SD, Jadhav VV, Mulani RM, Kadam AS, Mane RS. Assessment of antibacterial and anti-biofilm effects of zinc ferrite nanoparticles against Klebsiella pneumoniae. Folia Microbiol (Praha). 2022; 67(5): 747-755. doi: 10.1007/s12223-022-00969-2

62. Hasanova UA, Ramazanov MA, Maharramov AM, Eyvazova QM, Agamaliyev ZA, Parfyonova YV, et al. Nano-coupling of cephalosporin antibiotics with Fe3O4 nanoparticles: Trojan horse approach in antimicrobial chemotherapy of infections caused by Klebsiella spp. J Biomater Nanobiotechnol. 2015; 6: 225-235. doi: 10.4236/jbnb.2015.63021

63. Khaleel DS, Mutter TY, Huang X. Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm. Microsc Res Tech. 2024; 87(11): 2774-2784. doi: 10.1002/jemt.24650

64. Shkodenko L, Kassirov I, Koshel E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms. 2020; 8(10): 1545. doi: 10.3390/microorganisms8101545

65. Gholizadeh O, Ghaleh HEG, Tat M, Ranjbar R, Dorostkar R. The potential use of bacteriophages as antibacterial agents against Klebsiella pneumoniae. Virol J. 2024; 21(1): 191. doi: 10.1186/s12985-024-02450-7

66. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann Clin Microbiol Antimicrob. 2020; 19(1): 45. doi: 10.1186/s12941-020-00389-5

67. Glazunov EA, Zurabov FM, Pavlova IB, Tolmacheva GS. Effects of the virulent bacteriophages on Klebsiella pneumoniae biofilms. Problems of Veterinary Sanitation, Hygiene and Ecology. 2020; 1(4): 480-485. (In Russ.). doi: 10.36871/vet.san.hyg.ecol.202004012

68. Gordina EM, Bozhkova SA, Smirnova LN. Anti-bacterial and anti-biofilm activity of bacteriophages against Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from orthopedic patients. Pacific Medical Journal. 2023; (1): 59-63. (In Russ.). doi: 10.34215/1609-1175-2023-1-59-63

69. Chhibber S, Nag D, Bansal S. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol. 2013; 13: 174. doi: 10.1186/1471-2180-13-174

70. de Souza GHA, Rossato L, de Oliveira AR, Simionatto S. Antimicrobial peptides against polymyxin-resistant Klebsiella pneumoniae: A patent review. World J Microbiol Biotechnol. 2023; 39(3): 86. doi: 10.1007/s11274-023-03530-6

71. van der Lans SPA, Bardoel BW, Ruyken M, de Haas CJC, Baijens S, Muts RM, et al. Agnostic B cell selection approach identifies antibodies against K. pneumoniae that synergistically drive complement activation. Nat Commun. 2024; 5(1): 8100. doi: 10.1038/s41467-024-52372-9

72. Feldman MF, Mayer Bridwell AE, Scott NE, Vinogradov E, McKee SR, Chavez SM, et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc Natl Acad Sci U S A. 2019; 116(37): 18655-18663. doi: 10.1073/pnas.1907833116

73. Lin TL, Yang FL, Ren CT, Pan YJ, Liao KS, Tu IF, et al. Development of Klebsiella pneumoniae capsule polysaccharide conjugated vaccine candidates using phage depolymerases. Front Immunol. 2022; 13: 843183. doi: 10.3389/fimmu.2022.843183

74. Logunova EV, Nasedkin AN. Modern view on antimicrobial photodynamic therapy (review of literature). Laser Medicine. 2015; 19(2): 44-52. (In Russ.).

75. Liu C, Zhou Y, Wang L, Han L, Lei J, Ishaq HM, et al. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester. Lasers Med Sci. 2016; 31(3): 557-565. doi: 10.1007/s10103-016-1891-1

76. Del Pozo JL, Rouse MS, Patel R. Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs. 2008; 31(9): 786-795. doi: 10.1177/039139880803100906

77. Mohamed DH, Mohammed H, El-Gebaly RH, Adam M, Ali FM. Pulsed electric field at resonance frequency combat Klebsiella pneumonia biofilms. Appl Microbiol Biotechnol. 2024; 108(1): 505. doi: 10.1007/s00253-024-13330-z

78. Liu X, Wang J, Weng CX, Wang R, Cai Y. Low-frequency ultrasound enhances bactericidal activity of antimicrobial agents against Klebsiella pneumoniae biofilm. Biomed Res Int. 2020; 2020: 5916260. doi: 10.1155/2020/5916260


Review

For citations:


Fadeeva T.V., Nevezhina A.V. New strategies for the treatment of infections caused by biofilm-producing Klebsiella pneumoniae. Acta Biomedica Scientifica. 2024;9(6):63-75. (In Russ.) https://doi.org/10.29413/ABS.2024-9.6.7

Views: 502


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)