Preview

Acta Biomedica Scientifica

Advanced search

Genotypic and phenotypic characteristics of Mycobacterium tuberculosis drug resistance in TB children

https://doi.org/10.29413/ABS.2022-7.6.8

Abstract

Background. Russian Federation is included in the list of 30 countries with the highest burden of tuberculosis, including MDR tuberculosis. The most important part of this problem is the primary MDR/XDR TB in children.
The aim: a comparative analysis of the phenotypic and genotypic profile of drug resistance to anti-tuberculosis drugs (ATP) according to whole genome sequencing of M. tuberculosis strains from children.
Materials and methods. Whole genome sequencing (WGS) results of 61 M. tuberculosis isolates from children with tuberculosis in 2006–2020 in the Russian Federation were analyzed for anti-TB drug resistance mutations, according to the WHO catalog and were compared with the results of phenotypic drug sensitivity.
Results. The M. tuberculosis belonged to two genetic groups: Beijing genotype – 82 % (50/61) dominant Central Asian Russian (31/50) and B0/W148 (16/50) subtypes, and non-Beijing (Ural, S, LAM) – 18 % (11/61). Three isolates belonged to Asian Ancestral subtype (3/50). Of the 61 isolates, only 14.7 % (9/61) were sensitive to antiTB drugs, 49.2 % (30/61) were MDR and 14.7 % (9/61) were pre-XDR. Comparison of the resistance profile (MDR/pre-XDR) with genotype revealed an upward shift for Beijing isolates, in particular Beijing B0/W148 (15/16) subline compared to other Beijing (19/34) (Chi-square with Yates correction = 5.535; p < 0.05) and nonBeijing (5/12) (Chi-square with Yates correction = 6.741; p < 0.05) subtypes. Discrepancies between genotypic and phenotypic drug resistance profiles were found in 11.5 % (7/61) of cases.
Conclusions. Based on the analysis of WGS data, the genotypic characteristics of M. tuberculosis and the most complete set of drug resistance mutations were obtained, indicating a significant prevalence in MDR and pre-XDR TB of cases caused by epidemic subtypes of Beijing (B0/W148 and Central Asian Russian). The molecular mechanisms of adaptation of M. tuberculosis to the treatment of anti-TB drugs are not unique for the child population but reflect the general processes of the spread of MDR/XDR in Russia.

About the Authors

P. A. Khromova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Polina A. Khromova – Junior Research Officer at the Laboratory of Epidemiologically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



S. N. Zhdanova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Svetlana N. Zhdanova – Dr. Sc. (Med.), Leading Research Officer at the Laboratory of Epidemiologically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



N. S. Solovieva
Saint Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Natalya S. Solovieva – Cand. Sc. (Med.), Head of Bacteriological Laboratory

Ligovsky proezd 2-4, Saint Petersburg 191036, Russian Federation 



V. V. Sinkov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Vyacheslav V. Sinkov – Cand. Sc. (Med.), Senior Research Officer at the Laboratory of Epidemiologically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



A. E. Masharsky
The Bio-Bank Resource Center, Research Park, Saint Petersburg State University
Russian Federation

Alexey E. Masharsky – Cand. Sc. (Med.), Leading Specialist

Universitetskaya emb. 7/9, Saint Petersburg 199034, Russian Federation 



A. A. Vyazovaya
Saint Petersburg Pasteur Institute
Russian Federation

Anna A. Vyazovaya – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Molecular Epidemiology and Evolutionary Genetics

Mira str. 14, Saint Petersburg 197101, Russian Federation 



I. V. Mokrousov
Saint Petersburg Pasteur Institute
Russian Federation

Igor V. Mokrousov – Dr. Sc. (Biol.), Head of Molecular Epidemiology and Evolutionary Genetics Laboratory

Mira str. 14, Saint Petersburg 197101, Russian Federation 



L. V. Rychkova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Lyubov V. Rychkova – Dr. Sc. (Med.), Professor, Corresponding Member of RAS, Director

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 

 



L. I. Kolesnikova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Lyubov I. Kolesnikova – Dr. Sc. (Med.), Professor, Academician of RAS, Academic Director

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



V. Yu. Zhuravlev
Saint Petersburg Research Institute of Phthisiopulmonology
Russian Federation

Vyacheslav Yu. Zhuravlev – Cand. Sc. (Med.), Leading Research Officer, Coordinator of Laboratory Diagnostics Direction, Head of Laboratory for Etiological Diagnostics

 Ligovsky proezd 2-4, Saint Petersburg 191036, Russian Federation 



O. B. Ogarkov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Oleg B. Ogarkov – Dr. Sc. (Med.), Head of the Laboratory of Epidemiologically and Socially Significant Infections

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



References

1. WHO. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 27–29 October 2020. URL: https://apps.who.int/iris/handle/10665/338776 [date of access: 20.06.2022].

2. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int J Tuberc Lung Dis. 2015; 19(11): 1276-1289. doi: 10.5588/ijtld.15.0389

3. Kendall EA, Fofana MO, Dowdy DW. Burden of transmitted multidrug resistance in epidemics of tuberculosis: A transmission modelling analysis. Lancet Respir Med. 2015; 3(12): 963-972. doi: 10.1016/S2213-2600(15)00458-0

4. Zhdanova S, Heysell SK, Ogarkov O, Boyarinova G, Alexeeva G, Pholwat S, et al. Primary multidrug-resistant Mycobacterium tuberculosis in 2 regions, Eastern Siberia, Russian Federation. Emerg Infect Dis. 2013; 19(10): 1649-1652. doi: 10.3201/eid1910.121108

5. Sinkov V, Ogarkov O, Mokrousov I, Bukin Y, Zhdanova S, Heysell SK. New epidemic cluster of pre-extensively drug resistant isolates of Mycobacterium tuberculosis Ural family emerging in Eastern Europe. BMC Genomics. 2018; 19(1): 1-9. doi: 10.1186/s12864-018-5162-3

6. Sinkov VV, Savilov ED, Ogarkov OB. Reconstruction of the epidemic history of the Beijing genotype of Mycobacterium tuberculosis in Russia and former Soviet countries using spoligotyping. Molecular Genetics Microbiology and Virology. 2011; 26(3): 25-29. (In Russ.). doi: 10.3103/S0891416811030050

7. Mokrousov I, Narvskaya O, Vyazovaya A, Millet J, Otten T, Vishnevsky B, et al. Mycobacterium tuberculosis Beijing genotype in Russia: In search of informative variable-number tandemrepeat loci. J Clin Microbiol. 2008; 46(11): 3576-3584. doi: 10.1128/jcm.00414-08

8. Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, et al. Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: Human traces across pathogen’s phylogeography. Mol Phylogenet Evol. 2016; 99: 133-143. doi: 10.1016/j.ympev.2016.03.020

9. WHO. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance: supplementary document. URL: https://apps.who.int/iris/handle/10665/341906 [date of access: 20.06.2022].

10. PRJNA786957. URL: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA786957 [date of access: 23.06.2022].

11. Li H, Durbin R. Fast and accurate short read alignment with Burrows – Wheeler transform. Bioinformatics. 2009; 25(14): 1754-1760. doi: 10.1093/bioinformatics/btp324

12. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021; 16; 10(2): giab008. doi: 10.1093/gigascience/giab008

13. Sinkov V. Vsink/bsatool: First beta pre-release (Version 0.1). Zenodo. 2019. doi: 10.5281/zenodo.3352204

14. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014; 10(4): e1003537. doi: 10.1371/journal.pcbi.1003537

15. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018; 67(5): 901-904. doi: 10.1093/sysbio/syy032

16. Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST. Cambridge University Press; 2015.

17. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQTREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32(1): 268-274. doi: 10.1093/molbev/msu300

18. Homolka S, Projahn M, Feuerriegel S, Ubben T, Diel R, Nübel U, et al. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One. 2012; 7(7): e39855. doi: 10.1371/journal.pone.0039855

19. Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D, Ilina E, et al. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017; 7(1): 9227. doi: 10.1038/s41598-017-10018-5

20. Napier G, Campino S, Merid Y, Abebe M, Woldeamanuel Y, Aseffa A, et al. Robust barcoding and identification of Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome Med. 2020; 12(1): 114. doi: 10.1186/s13073-020-00817-3

21. Fenner L, Egger M, Bodmer T, Altpeter E, Zwahlen M, Jaton K, et al. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012; 56(6): 3047-3053. doi: 10.1128/AAC.06460-11

22. Andreevskaya SN, Smirnova TG, Andrievskaya IYu, Kiseleva EA, Larionova EE, Sevastyanova EV, et al. The comparative analysis of phenotypic and genotypic drug resistance of Mycobacterium tuberculosis isolated from children and adolescents at the hospital of the central TB research institute in 2011-2018. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza. 2018; 3: 30-41. (In Russ.). doi: 10.7868/S2587667818030056

23. Jou R, Lee WT, Kulagina EV, Weng JY, Isakova AI, Lin WH, et al. Redefining MDR-TB: Comparison of Mycobacterium tuberculosis clinical isolates from Russia and Taiwan. Infect Genet Evol. 2019; 72: 141-146. doi: 10.1016/j.meegid.2018.12.031

24. Gopal P, Sarathy JP, Yee M, Ragunathan P, Shin J, Bhushan S, et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat Commun. 2020; 11(1): 1661. doi: 10.1038/s41467-020-15516-1

25. Ergeshov A, Andreevskaya SN, Larionova EE, Smirnova TG, Chernousova LN. The spectrum of mutations in genes associated with resistance to rifampicin, isoniazid, and fluoroquinolones in the clinical strains of M. tuberculosis reflects the transmissibility of mutant clones. Molecular Biology. 2017; 51(4): 595-602. (In Russ.). doi: 10.1134/S0026893317030049

26. Gómez-González PJ, Perdigao J, Gomes P, Puyen ZM, Santos-Lazaro D, Napier G, et al. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep. 2021; 11(1): 19431. doi: 10.1038/s41598-021-98862-4

27. Ushtanit A, Kulagina E, Mikhailova Y, Makarova M, Safonova S, Zimenkov D. Molecular determinants of ethionamide resistance in clinical isolates of Mycobacterium tuberculosis. Antibiotics. 2022; 11(2): 133. doi: 10.3390/antibiotics11020133

28. Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2009; 106(47): 20004-20009. doi: 10.1073/pnas.0907925106


Review

For citations:


Khromova P.A., Zhdanova S.N., Solovieva N.S., Sinkov V.V., Masharsky A.E., Vyazovaya A.A., Mokrousov I.V., Rychkova L.V., Kolesnikova L.I., Zhuravlev V.Yu., Ogarkov O.B. Genotypic and phenotypic characteristics of Mycobacterium tuberculosis drug resistance in TB children. Acta Biomedica Scientifica. 2022;7(6):82-91. (In Russ.) https://doi.org/10.29413/ABS.2022-7.6.8

Views: 671


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)