Associations of genes of DNA repair systems with Parkinson’s disease
https://doi.org/10.29413/ABS.2022-7.6.2
Abstract
Background. Approximately 5–10 % of cases of Parkinson’s disease (PD) are monogenic, in other cases the pathology has a multifactorial etiology. One of recognized pathogenetic pathways of PD is mitochondrial dysfunction, in particular the accumulation of damage in mitochondrial DNA. Hence, the genes of DNA repair proteins are promising candidate genes for multifactorial forms of PD.
The aim. To study the involvement of genes of DNA repair proteins in the development of Parkinson’s disease.
Materials and methods. The associative analysis was carried out while comparing a group of patients with PD (n = 133) with a Tomsk population sample (n = 344). SNaPshot analysis was used to study 8 SNPs in genes of DNA repair proteins (rs560191 (TP53BP1); rs1805800 and rs709816 (NBN); rs473297 (MRE11A); rs1189037 and rs1801516 (ATM); rs1799977 (MLH1); rs1805321 (PMS2)).
Results. Common alleles and homozygous rs1801516 genotypes in the ATM gene predispose the development of PD (odds ratio (OR) – 3.27 (p = 0.000004) and OR = 3.46 (p = 0.00008) for risk alleles and genotype respectively) and rs1799977 in the MLH1 gene (OR = 1.88 (p = 0.0004) and OR = 2.42 (p = 0.00007) respectively); heterozygotes have a protective effect (OR = 0.33 (p = 0.0007) and OR = 0.46 (p = 0.0007) for ATM and MLH1, respectively). The rare rs1805800 allele in the NBN gene (OR = 1.62 (p = 0.019)) and a homozygous genotype for it (OR = 2.28 (p = 0.016)) also predispose to PD. Associations with PD of the ATM, MLH1, NBN genes were revealed for the first time.
Conclusion. Mitochondrial dysfunction is one of the key factors in the pathogenesis of PD, while at least two of the three protein products of associated genes are involved in the development of mitochondrial dysfunction. Accordingly, it can be assumed that associated genes are involved in the pathogenesis of PD precisely through mitochondrial dysfunction.
About the Authors
N. P. BabushkinaRussian Federation
Nadezhda P. Babushkina – Cand. Sc. (Biol.), Research Officer at the Laboratory of Population Genetics
Ushaika embankment 10, Tomsk 634050, Russian Federation
M. A. Nikitina
Russian Federation
Maria A. Nikitina– Cand. Sc. (Med.), Associate Professor at the Department of Neurology and Neurosurgery
Moskovsky tract 2, Tomsk 634050, Russian Federation
E. Yu. Bragina
Russian Federation
Elena Yu. Bragina – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Population Genetics
Ushaika embankment 10, Tomsk 634050, Russian Federation
V. M. Alifirova
Russian Federation
Valentina M. Alifirova– Dr. Sc. (Med.), Professor, Head of the Department of Neurology and Neurosurgery
Moskovsky tract 2, Tomsk 634050, Russian Federation
A. E. Postrigan
Russian Federation
Anna E. Postrigan – Junior Research Officer at the Laboratory of Orphan Diseases Genomics
Ushaika embankment 10, Tomsk 634050, Russian Federation
Ye. A. Deviatkina
Russian Federation
Yekaterina A. Deviatkina – Student
Moskovsky tract 2, Tomsk 634050, Russian Federation
D. E. Gomboeva
Russian Federation
Densema E. Gomboeva – Clinical Resident
Ushaika embankment 10, Tomsk 634050, Russian Federation
M. S. Nazarenko
Russian Federation
Maria S. Nazarenko – Dr. Sc. (Med.), Leading Research Officer at the Laboratory of Population Genetics; Professor at the Department of Medical Genetics
Ushaika embankment 10, Tomsk 634050, Russian Federation
Moskovsky tract 2, Tomsk 634050, Russian Federation
References
1. Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Rev Neurol (Paris). 2016; 172(1): 14-26. doi: 10.1016/j.neurol.2015.09.012
2. Siitonen A, Nalls MA, Hernandez D, Gibbs JR, Ding J, Ylikotila P, et al. Genetics of early-onset Parkinson’s disease in Finland: Exome sequencing and genome-wide association study. Neurobiol Aging. 2017; 53: 195.e7-195.e10. doi: 10.1016/j.neurobiolaging.2017.01.019
3. Cherian A, Divya KP. Genetics of Parkinson’s disease. Acta Neurol Belg. 2020; 120(6): 1297-1305. doi: 10.1007/s13760-020-01473-5
4. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021; 397(10291): 2284-2303. doi: 10.1016/S0140-6736(21)00218-X
5. Schormair B, Kemlink D, Mollenhauer B, Fiala O, Machetanz G, Roth J, et al. Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin Genet. 2018; 93(3): 603-612. doi: 10.1111/cge.13124
6. Puschmann A. New genes causing hereditary Parkinson’s disease or Parkinsonism. Curr Neurol Neurosci Rep. 2017; 17(9): 66. doi: 10.1007/s11910-017-0780-8
7. Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, et al. A clinical and genetic study of early-onset and familial parkinsonism in Taiwan: An integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord. 2019; 34(4): 506-515. doi: 10.1002/mds.27633
8. Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, et al. Wholeexome sequencing in early-onset Parkinson’s disease among ethnic Chinese. Neurobiol Aging. 2020; 90: 150.e5-150.e11. doi: 10.1016/j.neurobiolaging.2019.12.023
9. OMIM. URL: https://www.ncbi.nlm.nih.gov/omim [date of access: 16.05.2022].
10. Wu YY, Kuo HC. Functional roles and networks of noncoding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020; 27(1): 49. doi: 10.1186/s12929-020-00636-z
11. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018; 592(5): 692-702. doi: 10.1002/1873-3468.12964
12. Vodickova A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion. 2022; 64: 1-18. doi: 10.1016/j.mito.2022.02.004
13. Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim Biophys Acta. 2009; 1787(5): 335-344. doi: 10.1016/j.bbabio.2009.02.021
14. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013; 106-107: 17-32. doi: 10.1016/j.pneurobio.2013.04.004
15. Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017; 134(1): 129-149. doi: 10.1007/s00401-017-1704-z
16. Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020; 15: 235-259. doi: 10.1146/annurev-pathmechdis-012419-032711
17. Iwata R, Casimir P, Vanderhaeghen P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science. 2020; 369(6505): 858-862. doi: 10.1126/science.aba9760
18. Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016; 139(Suppl 1): 216-231. doi: 10.1111/jnc.13731
19. Franco R, Rivas-Santisteban R, Navarro G, Pinna A, ReyesResina I. Genes implicated in familial Parkinson’s disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int J Mol Sci. 2021; 22(9): 4643. doi: 10.3390/ijms22094643
20. Flones IH, Tzoulis C. Mitochondrial respiratory chain dysfunction – A hallmark pathology of idiopathic Parkinson’s disease? Front Cell Dev Biol. 2022; 10: 874596. doi: 10.3389/fcell.2022.874596
21. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989; 1(8649): 1269. doi: 10.1016/s0140-6736(89)92366-0
22. Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005; 95(4): 930-939. doi: 10.1111/j.1471-4159.2005.03493.x
23. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018; 109(Pt B): 249-257. doi: 10.1016/j.nbd.2017.04.004
24. Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet. 2019; 28(12): 2001-2013. doi: 10.1093/hmg/ddz038
25. Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells. 2019; 8(7): 712. doi: 10.3390/cells8070712
26. Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson’s disease. Exp Neurol. 2009; 218(2): 247-256. doi: 10.1016/j.expneurol.2009.03.019
27. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol. 2000; 162(1): 37-50. doi: 10.1006/exnr.2000.7333
28. Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem Sci. 2021; 46(4): 329-343. doi: 10.1016/j.tibs.2020.11.007
29. Ra D, Sa B, Sl B, Js M, Sj M, Da D, et al. Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotox Res. 2021; 39(1): 81-106. doi: 10.1007/s12640-020-00302-0
30. Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. PNAS USA. 2005; 102: 4990-4995. doi: 10.1073/pnas.0500253102
31. Vasileiou PVS, Mourouzis I, Pantos C. Principal aspects regarding the maintenance of mammalian mitochondrial genome integrity. Int J Mol Sci. 2017; 18: 1821. doi: 10.3390/ijms18081821
32. Storr SJ, Woolston CM, Martin SG. Base excision repair, the redox environment and therapeutic implications. Curr Mol Pharmacol. 2012; 5: 88-101.
33. Zinovkina LA. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry (Mosc). 2018; 83(3): 233-249. doi: 10.1134/S0006297918030045
34. Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, et al. Mitochondrial dysfunction in ataxiatelangiectasia. Blood. 2012; 119: 1490-1500. doi: 10.1182/blood-2011-08-373639
35. Rashid S. Targeting the mitochondria for the treatment of MLH1-deficient disease: Thesis. 2017. URL: http://qmro.qmul.ac.uk/xmlui/handle/123456789/30924 [date of access: 16.05.2022].
36. Rashid S, Freitas MO, Cucchi D, Bridge G, Yao Z, Gay L, et al. MLH1 deficiency leads to deregulated mitochondrial metabolism. Cell Death Dis. 2019; 10(11): 795. doi: 10.1038/s41419-019-2018-y
37. Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, et al. Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell. 2005; 16: 997-1010. doi: 10.1091/mbc.e04-10-0895
38. Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell. 2016; 27: 223-235. doi: 10.1091/mbc.E15-05-0260
39. Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res. 2018; 809: 81-87. doi: 10.1016/j.mrfmmm.2017.07.002
40. Maciejczyk M, Mikoluc B, Pietrucha B, HeropolitanskaPliszka E, Pac M, Motkowski R, et al. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol. 2017; 11: 375-383. doi: 10.1016/j.redox.2016.12.030
41. Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn. 2018; 247: 33-46. doi: 10.1002/dvdy.24522
42. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015; 30(12): 1591-601. doi: 10.1002/mds.26424
43. Manual guide. Applied Biosystems user bulletin: Using the SNaPshot® Multiplex System. 2005. URL: https://tools.thermofisher.com/content/sfs/manuals/cms_041203.pdf [date of access: 20.05.2022].
44. Resseguie EA, Staversky RJ, Brookes PS, O’Reilly MA. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction. Redox Biol. 2015; 5: 176-185. doi: 10.1016/j.redox.2015.04.012
45. Shimura T. ATM-mediated mitochondrial radiation responses of human fibroblasts. Genes (Basel). 2021; 12(7): 1015. doi: 10.3390/genes12071015
46. Lee JH, Paull TT. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol. 2021; 22(12): 796-814. doi: 10.1038/s41580-021-00394-2
47. Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal. 2018; 11(512): eaan5598. doi: 10.1126/scisignal.aan5598
48. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003; 115(5): 629-640. doi: 10.1016/s0092-8674(03)00926-7
49. Brown KD, Rathi A, Kamath R, Beardsley DI, Zhan Q, Mannino JL, et al. The mismatch repair system is required for S-phase checkpoint activation.Nat Genet. 2003; 33: 80-84. doi: 10.1038/ng1052
Review
For citations:
Babushkina N.P., Nikitina M.A., Bragina E.Yu., Alifirova V.M., Postrigan A.E., Deviatkina Ye.A., Gomboeva D.E., Nazarenko M.S. Associations of genes of DNA repair systems with Parkinson’s disease. Acta Biomedica Scientifica. 2022;7(6):12-21. (In Russ.) https://doi.org/10.29413/ABS.2022-7.6.2