Preview

Acta Biomedica Scientifica

Advanced search

Resistance of Rhodococcus ruber biofilms to CuO nanoparticles depending on exopolymer matrix composition

https://doi.org/10.29413/ABS.2022-7.5-1.11

Abstract

   Background. The widespread use of copper oxide nanoparticles (CuO NPs) increases their release into the environment, which leads to accumulation in trophic chains. Bacterial biofilms are more resistant to physico-chemical factors compared to planktonic cells due to an exopolymer matrix (EPM) consisting of polysaccharides, proteins, lipids and nucleic acids. Rhodococcus actinobacteria are promising for environmental biotechnology due to biodegradation of petroleum products, pesticides and other organic pollutants, as well as bioaccumulation of heavy metals.
   The aim. To investigate effects of CuO NPs on the viability of Rhodococcus ruber IEGM 231 cells in biofilms and the dynamics of EPM components.
   Methods. R. ruber biofilms were grown on microscopy cover glass with CuO NPs and EPM components were studied using confocal laser scanning microscopy (CLSM) by differentiating staining with LIVE/DEAD to determine the number of living and dead cells, Nile Red for lipids, FITC for proteins and Calcofluor White for betapolysaccharides.
   Results. It was found that R. ruber biofilms grown in a mineral medium with
1.0 vol.% n-hexadecane are more resistant to CuO NPs compared to biofilms growing in a rich culture medium (meat-peptone broth). This was due to more intensive EPM formation, which plays a major role in protecting cells from the bactericidal action of nanometals. A weak stimulating effect of a low (0.001 g/l) concentration of CuO NPs on biofilm formation was registered. Dynamics and localization of main EPM components were monitored during prolonged (24–72 h) biofilm cultivation with CuO NPs. When exposed to high (0.01–0.1 g/l) concentrations of CuO NPs, a consistently high lipid content and an increase in concentrations of polysaccharides and proteins were revealed.
   Conclusion. Understanding the complex interaction mechanisms of nanometals and biofilms will contribute to the development of effective biocatalysts based on immobilized bacterial cells. Also, the obtained data can be used to combat unwanted biofilms with the help of metal nanoparticles.

About the Authors

E. A. Bayandina
Perm State University
Russian Federation

Elena A. Bayandina – Student at the Department of Microbiology and Immunology

Bukireva str. 15, Perm 614068



G. G. Glebov
Perm State University; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Grigorii G. Glebov – Engineer at the Department of Microbiology and Immunology, Perm State University; Postgraduate, Junior Research Officer, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Bukireva str. 15, Perm 614068
Goleva str. 13, Perm 614081



M. S. Kuyukina
Perm State University; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maria S. Kuyukina – Dr. Sc. (Biol.), Professor at the Department of Microbiology and Immunology, Perm State University; Leading Research Officer, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Bukireva str. 15, Perm 614068
Goleva str. 13, Perm 614081



I. B. Ivshina
Perm State University; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Irina B. Ivshina – Dr. Sc. (Biol.), Professor, Academician of RAS, Professor at the Department of Microbiology and Immunology, Perm State University; Head of the Laboratory, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Bukireva str. 15, Perm 614068
Goleva str. 13, Perm 614081



References

1. Grigore M. E., Biscu E. R., Holban A. M., Gestal M. C., Grumezescu A. M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel). 2016; 9 (4): 75. doi: 10.3390/ph9040075

2. Pugazhendhi A., Kumar S. S., Manikandan M., Saravanan M. Photocatalytic properties and antimicrobial efficacy of Fe-doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathogenesis. 2018; 122: 84-89. doi: 10.1016/j.micpath.2018.06.016

3. Chethana D. M., Thanujaa T. C., Maheshb H. M., Kirubac M. S., Josec A. S., Barshilia H. C., et al. Synthesis, structural, magnetic and NO<sub>2</sub> gas sensing property of CuO nanoparticles. Ceramics Int. 2021; 47: 10381-10387. doi: 10.1016/j.ceramint.2020.06.129

4. Ruiz P., Katsumiti A., Nieto J. A., Bori J., Jimeno-Romero A., Reip P., et al. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Mar Env Res. 2015; 11: 107-120. doi: 10.1016/j.marenvres.2015.07.018

5. Jahid I. K., Han R. N., Sang-Do-Ha S. S. Competitive interactions inside mixed-culture biofilms of Salmonella typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation. Food Res Int. 2014; 55: 445-454. doi: 10.1016/j.foodres.2013.11.042

6. Al-Shamiri M. M., Zhang S., Mi P., Liu Y., Xun M., Yang E., et al. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb Pathog. 2021; 155: 104922. doi: 10.1016/j.micpath.2021.104922

7. Recupido F., Petala M., Casertac S., Kostoglou S., Guidoc S., Karapantsios T. D. Wetting properties of dehydrated biofilms under different growth conditions. Coll Surf B Biointerfaces. 2021; 210: 112245. doi: 10.1016/j.colsurfb.2021.112245

8. Brilhante R. S. N., de Aguiar F. R. M., da Silva M. L.Q., de Oliveira J. S., de Camargo Z. P., Rodrigues A. M., et al. Antifungal susceptibility of Sporothrix schenckii complex biofilms. Med Mycol. 2018; 56: 297-306. doi: 10.1093/mmy/myx043

9. Martínková L., Uhnáková B., Pátek M., Nešvera J., Křen V. Biodegradation potential of the genus Rhodococcus. Environ Int. 2009; 5: 162-177. doi: 10.1016/j.envint.2008.07.018

10. Krivoruchko A. V., Kuyukina M. S., Ivshina I. B. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts. 2021; 9 (3): 236. doi: 10.3390/catal9030236

11. Kuyukina M. S., Ivshina I. B., Krivoruchko A. V., Peshkur T. V., Cunninghamc C. J. Improvement of jet fuel contaminated water treatment in a fluidized-bed bioreactor by introducing nickel nanoparticles. Int Biodeterior Biodegrad. 2021; 164: 105308. doi: 10.1016/j.ibiod.2021.105308

12. Ivshina I. B., Kuyukina M. S., Kamenskikh T. N., Krivoruchko A. V., Tyumina E. A., Elkin A. A. Hydrocarbon-oxidizing Rhodococci: Features of Biological organization under the influence of eco-pollutants. Atlas-monograph. 2021. (In Russ.).

13. Karygianni L., Ren Z., Koo H., Thurnheer T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020; 28: 668-681. doi: 10.1016/j.tim.2020.03.016

14. Kuyukina M. S., Ivshina I. B., Rychkova M. I., Chumakov O. B. Effect of cell lipid composition on the formation of nonspecific antibiotic resistance in alkanotrophic rhodococci. Microbiology. 2000; 69: 51-57. doi: 10.1007/BF02757257

15. Miao M., Wang C., Hou J., Wang P., Ao Y., Li Y., et al. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Biores Technol. 2016; 216: 537-544. doi: 10.1016/j.biortech.2016.05.082

16. Selvaraj R. S. A., Rajendran M., Nagaiah H. P. Re-potentiation of β-lactam antibiotic by synergistic combination with biogenic copper oxide nanocubes against biofilm forming multidrugresistant bacteria. Molecules. 2019; 17: 3055. doi: 10.3390/molecules24173055

17. Naseer M., Ramadan R., Xing J., Samak N. A. Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms. Int Biodeter Biodegrad. 2019; 159: 105201. doi: 10.1016/j.ibiod.2021.105201

18. Fagerlind M. G., Webb J. S., Barraud N., McDougald D., Jansson A., Nilsson P., et al. Dynamic modelling of cell death during biofilm development. J Theor Biol. 2012; 295: 23-36. doi: 10.1016/j.jtbi.2011.10.007

19. D’Acuntoa B., Esposito G., Frunzo L., Pirozzi F. Dynamic modeling of sulfate reducing biofilms. Comput Math Appl. 2011; 62: 2601-2608. doi: 10.1016/j.camwa.2011.07.064

20. Buhmann M., Stiefel P., Maniura-Weber K., Ren Q. In vitro biofilm models for device-related infections. Trends Biotechnol. 2014; 1: 1-4. doi: 10.1016/j.tibtech.2016.05.016

21. Ivshina I. B., Kuyukina M. S., Krivoruchko A. V., Plekhov O. A., Naimark O. B., Podorozhko E. A., et al. Biosurfactantenhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl Microbiol Biotechnol. 2013; 97: 5315-5327. doi: 10.1007/s00253-013-4869-y

22. Ikuma K., Decho A. W., Lau B. L. When nanoparticles meet biofilms – interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol. 2015; 6: 591. doi: 10.3389/fmicb.2015.00591

23. Ke P. C., Lin S., Parak W. J., Davis T. P., Caruso F. A decade of the protein corona. ACS Nano. 2017; 11: 11773-11776. doi: 10.1021/acsnano.7b08008

24. Ivshina I. B., Kuyukina M. S., Kostina L. V. Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria. Rus J Ecology. 2013; 44 (2): 123-130.

25. Adav S. S., Lin J. C., Yang Z., Whiteley C. G., Lee D. J., Peng X. F., et al. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol Adv. 2016; 28: 255-280. doi: 10.1016/j.biotechadv.2009.08.006

26. Kassinger K. S., Hoek M. L. Biofilm architecture: an emerging synthetic biology target. Synth Sys Biotechnol. 2020; 5: 1-10. doi: 10.1016/j.synbio.2020.01.001

27. Flemming H. C., Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019; 17: 247-260. doi: 10.1038/s41579-019-0158-9

28. Hoostal M. J., Bidart-Bouzat M. G., Bouzat J. L. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiol Ecol. 2008; 65: 156-168. doi: 10.1111/j.1574-6941.2008.00522.x

29. Wilmaerts D., Windels E. M., Verstraeten N., Michiels J. General mechanisms leading to persister formation and awakening. Trends Genet. 2019; 35: 401-411. doi: 10.1016/j.tig.2019.03.007


Review

For citations:


Bayandina E.A., Glebov G.G., Kuyukina M.S., Ivshina I.B. Resistance of Rhodococcus ruber biofilms to CuO nanoparticles depending on exopolymer matrix composition. Acta Biomedica Scientifica. 2022;7(5-1):100-109. https://doi.org/10.29413/ABS.2022-7.5-1.11

Views: 776


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)