Preview

Acta Biomedica Scientifica

Advanced search

Comparison of the composition and metabolic potential of the reindeer’s rumen microbiome in the Yamal-Nenets and Nenets autonomous district of the Russian Arctic

https://doi.org/10.29413/ABS.2022-7.3.4

Abstract

The adaptive ability of reindeer to the harsh conditions of the Russian Arctic is not determined solely by the genome of the macroorganism and, of course, includes an extensive genetic and metabolic repertoire of the microbiome.
The aim. To compare the taxonomic and predicted metabolic profiles of the rumen microbiome of adult reindeer living in the natural pastures of the Yamalo-Nenets and Nenets Autonomous districts of the Russian Federation.
Materials and methods. Expeditions to the Yamal-Nenets and Nenets Autonomous districts of the Russian Arctic in 2017 were carried out to take samples of the rumen. The contents of the rumen were taken from clinically healthy reindeer individuals (at least 3 times repetition). To analyze the animal scar microbiota and determine metabolic profiles, 16S rRNA NGS sequencing was performed on a MiSeq device (Illumina, USA). Bioinformatic data analysis was performed using QIIME2 software ver. 2020.8. The noise sequences were filtered by DADA2. Silva 138 reference database was used for taxonomy analysis. Reconstruction and prediction of the functional content of the metagenome was carried out using the software complex PICRUSt2 (v. 2.3.0).
Results. During NGS sequencing, a total of 223 768 sequences of the 16S rRNA gene of the reindeer scarring microbiome were studied. Significant (p ≤ 0.05) differences between the groups in 10 bacterial phyla and superphyla were revealed: Actinobacteriota, Spirochaetes, Chloroflexi, Verrucomicrobia, Bdellovibrionota, Synergistetes, Fusobacteriota, Myxococcota, Cyanobacteria, Campilobacterota. The results of the reconstruction and prediction of the functional content of the metagenome using the PICRUSt2 bioinformatic analysis made it possible to identify 328 potential metabolic pathways. Differences between the groups were revealed in 16 predicted metabolic pathways, among which the pathways of chlorophyllide and amino acid biosynthesis dominated.

About the Authors

E. S. Ponomareva
LLC Biotrof
Russian Federation

 Biotechnologist at the Molecular Genetic Laboratory

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation

 



E. A. Yildirim
LLC Biotrof; Saint-Petersburg State Agrarian University 
Russian Federation

 Dr. Sc. (Biol.), Chief Biotechnologist at the Molecular Genetic Laboratory; Professor at the Department of Large Animal Husbandry

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation

 Petersburgskoye highway 2, Saint-Petersburg, Pushkin 196601, Russian Federation 



V. A. Filippova
LLC Biotrof; Saint-Petersburg State Agrarian University 
Russian Federation

 Biotechnologist at the Molecular Genetic Laboratory; Head of the Laboratory of the Department of Large Animal Husbandry 

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint-Petersburg, Pushkin 196601, Russian Federation 



L. A. Ilina
LLC Biotrof; Saint-Petersburg State Agrarian University 
Russian Federation

 Cand. Sc. (Biol.), Head of the Molecular Genetic Laboratory; Associate Professor at the Department of Large Animal Husbandry 

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint-Petersburg, Pushkin 196601, Russian Federation 



A. V. Dubrowin
LLC Biotrof
Russian Federation

 Cand. Sc. (Vet.), Biotechnologist at the Molecular Genetic Laboratory 

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation



G. Y. Laptev
LLC Biotrof
Russian Federation

 Dr. Sc. (Biol.), Head  

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation



K. A. Kalitkina
LLC Biotrof; Saint-Petersburg State Agrarian University 
Russian Federation

 Biotechnologist of the Molecular Genetic Laboratory; Student at the Department of Large Animal Husbandry (directions “Zootechny”, master’s program “Selection in Zootechny”) 

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint-Petersburg, Pushkin 196601, Russian Federation 



T. P. Dunyashev
LLC Biotrof
Russian Federation

Biotechnologist at the Molecular Genetic Laboratory

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation



D. G. Tiurina
LLC Biotrof
Russian Federation

 Cand. Sc. (Econom.), Deputy Director for Finances 

 Malinovskaya str. 8, lit. A, St. Petersburg, Pushkin 196602, Russian Federation 



References

1. Burkin AA, Kononenko GP. Features of mycotoxin accumulation in lichens. Prikladnaya biokhimiya i mikrobiologiya. 2013; 5(49): 522-530. (In Russ.). doi: 10.7868/S0555109913050036

2. Yildirim EA, Ilyina LA, Laishev KA, Filippova VA, Dubrovin AV, Dunyashev TP, et al. Distribution of mycotoxins in the feed of the summer pasture diet Rangifer tarandus in the Arctic zone of Russia. Sel’skokhozyaistvennaya biologiya. 2018; 53(4): 779-786. (In Russ.). doi: 10.15389/agrobiology.2018.4.779rus

3. Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, et al. Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol. 2009; 57(2): 335-348. doi: 10.1007/s00248-008-9414-7

4. Kingsbury JM. Poisonous plants of the United States and Canada. 3rd ed. NJ, Prentice Hall; 1964.

5. Allison MJ, Mayberry WR, Mcsweeney CS, Stahl DA. Synergistes jonesii, gen. nov., sp. nov.: A rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol. 1992; 15(4): 522-529. doi: 10.1016/S0723-2020(11)80111-6

6. QIIME 2 user documentation. URL: https://docs.qiime2.org/2020.8/ [date of access: 15.03. 2022].

7. DADA2 Pipeline Tutorial. URL: https://benjjneb.github.io/dada2/tutorial.html/ [date of access: 15.03.2022].

8. PICRUsT2 Pipeline Tutorial. URL: https://github.com/picrust/picrust2/ [date of access: 15.03.2022].

9. Phantasus (v1.11.0) user documentation. URL: https://artyomovlab.wustl.edu/phantasus/ [date of access: 15.03.2022].

10. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One. 2012; 7(6): e38571. doi: 10.1371/journal.pone.0038571

11. Salgado-Flores A, Hagen LH, Ishaq SL, Zamanzadeh M, Wright AD, Pope PB, et al. Rumen and cecum microbiomes in reindeer (Rangifer tarandus tarandus) are changed in response to a lichen diet and may affect enteric methane emissions. PLoS One. 2016 11(5): 155-213. doi: 10.1371/journal.pone.0155213

12. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem. 2011; 43(7): 1450-1455. doi: 10.1016/j.soilbio.2011.03.012

13. Tadepalli S, Narayanan SK, Stewart GC, Chengappa MM, Nagaraja TG. Fusobacterium necrophorum: A ruminal bacterium that invades liver to cause abscesses in cattle. Anaerobe. 2009; 15(1-2): 36-43. doi: 10.1016/j.anaerobe.2008.05.005

14. Kazanovskiy ES, Karabanov VP, Klebenson KA. Reindeer diseases. Syktyvkar; 2011. (In Russ.).

15. Lee JI, McLaren AJ, Lymbery AJ, Hampson DJ. Human intestinal spirochetes are distinct from Serpulina hyodysenteriae. J Clin Microbiol. 1993; 31(1): 16-21. doi: 10.1128/jcm.31.1.16-21.1993

16. Lee JI, Hampson DJ. Intestinal spirochaetes colonizing aborigines from communities in the remote north of Western Australia. Epidemiol Infect. 1992; 109(1): 133-141.

17. Kopečná J, Sobotka R, Komenda J. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803. Planta. 2013; 237(2): 497-508. doi: 10.1007/s00425-012-1761-4


Review

For citations:


Ponomareva E.S., Yildirim E.A., Filippova V.A., Ilina L.A., Dubrowin A.V., Laptev G.Y., Kalitkina K.A., Dunyashev T.P., Tiurina D.G. Comparison of the composition and metabolic potential of the reindeer’s rumen microbiome in the Yamal-Nenets and Nenets autonomous district of the Russian Arctic. Acta Biomedica Scientifica. 2022;7(3):30-37. (In Russ.) https://doi.org/10.29413/ABS.2022-7.3.4

Views: 892


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)