Preview

Acta Biomedica Scientifica

Advanced search

Optical coherence tomography in the diagnosis and monitoring of congenital and juvenile glaucoma

https://doi.org/10.29413/ABS.2022-7.2.16

Abstract

Optical coherence tomography (OCT) in everyday routine practice is the method of choice for the instrumental diagnosis of glaucoma in adults. As a non-invasive and safe method of visualizing structural changes in the retina and the optic nerve, the method is of particular value in pediatric practice. At the same time, OCT diagnostics in children is associated with certain difficulties, both during the study and when interpreting the scan results.

This review summarizes the data from the literature and our own research in the diagnosis and monitoring of congenital and juvenile glaucoma from the standpoint of our own long-term clinical experience in using optical coherence tomography. We consider the physiological changes of the retina and optic nerve, attention is focused on the need to create a pediatric regulatory database of retinal thickness, the factors that determine the normal range of the data obtained and allow distinguishing physiological processes from pathological ones are identified. Clinical cases confirming the value of OCT in combined pathology are presented as examples.

About the Authors

S. I. Zhukova
Irkutsk Branch of S.N. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Cand. Sc. (Med.), Head of the Diagnostic Department, Ophthalmologist

Lermontova str. 337, Irkutsk 664033



T. N. Iureva
Irkutsk Branch of S.N. Fyodorov Eye Microsurgery Federal State Institution; Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education
Russian Federation

Dr. Sc. (Med.), Professor, Deputy Director for Science; Professor at the Department of Ophthalmology; Professor at the Department of Eye Diseases

Lermontova str. 337, Irkutsk 664033; Yubileyniy 100, Irkutsk
664049; Krasnogo Vosstaniya str. 1, Irkutsk 664003



References

1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. PLoS Med. 2009; 6(7): e1000097. doi: 10.1371/journal.pmed.1000097

2. Maccora KA, Sheth S, Ruddle JB. Optical coherence tomography in paediatric clinical practice. Clin Exp Optom. 2019; 102: 300-308. doi: 10.1111/cxo.12909

3. Monroy GL, Won J, Spillman DR, Dsouza R, Boppart SA. Clinical translation of handheld optical coherence tomography: Practical considerations and recent advancements. J Biomed Opt. 2017; 22(12): 1-30. doi: 10.1117/1.JBO.22.12.121715

4. Siebelmann S, Bachmann B, Lappas A, Dietlein T, Hermann M, Roters S, et al. Intraoperative optical coherence tomography in corneal and glaucoma surgical procedures. Ophthalmologe. 2016; 113(8): 646-650. doi: 10.1007/s00347-016-0320-y

5. Enders Ph, Schaub F, Adler W, Nikoluk R, Hermann MM, Heindl LM, et al. The use of Bruch’s membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol. 2017; 101(4): 530-535. doi: 10.1136/bjophthalmol-2016-308957

6. Wikstrand MH, Hård A-L, Niklasson A, Hellström A. Birth weight deviation and early postnatal growth are related to optic nerve morphology at school age in children born preterm. Pediatr Res. 2010; 67: 325-329. doi: 10.1203/PDR.0b013e3181ca9f43

7. Feng X, Nan Y, Pan J, Zou R, Shen L, Chen F. Comparative study on optic disc features of premature infants and full-term newborns. BMC Ophthalmol. 2021; 21(1): 120. doi: 10.1186/s12886-021-01833-6

8. Mansour AM. Racial variation of optic disc size. Ophthalmic Res. 1991; 23(2): 67-72. doi: 10.1159/000267091

9. Mansour AM. Racial variation of optic disc parameters in children. Ophthalmic Surg. 1992; 23(7): 469-471.

10. Rimmer S, Keating C, Chou T, Farb MD, Christenson PD, Foos RY, et al. Growth of the human optic disk and nerve during gestation, childhood, and early adulthood. Am J Ophthalmol. 1993; 116(6): 748-753. doi: 10.1016/s0002-9394(14)73476-2

11. Huynh SC, Wang XY, Rochtchina E, Crowston JG, Mitchell P. Distribution of optic disc parameters measured by OCT: Findings from a population-based study of 6-year-old Australian children. Invest Ophthalmol Vis Sci. 2006; 47(8): 3276-3285. doi: 10.1167/iovs.06-0072

12. Belghith A, Bowd Ch, Medeiros FA, Hammel N, Yang Zh, Weinreb RN, et al. Does the location of Bruch’s Membrane opening change over time? Longitudinal analysis using San-Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci. 2016; 57(2): 675-682. doi: 10.1167/iovs.15-17671

13. Katargina LA, Mazanova EV, Tarasenkov AO, Saydasheva EI, Brzheskiy VV, Volodin PL, et al. The federal clinical guidelines on “Diagnostics, medicamentous and surgical treatment of the children presenting with congenital glaucoma”. Russian Pediatric Ophthalmology. 2016; 11(1): 33-51. (In Russ.). doi: 10.18821/1993-1859-2016-11-1-33-51

14. Elía N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol. 2012; 96(5): 665-670. doi: 10.1136/bjophthalmol-2011-300916

15. Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013; 156: 1238-1243. doi: 10.1016/j.ajo. 2013.07.021

16. Park K, Kim J, Lee J. Reproducibility of Bruch’s membrane opening-minimum rim width measurements with spectral domain optical coherence tomography. J Glaucoma. 2017; 26(11): 1041-1050. doi: 10.1097/IJG.0000000000000787

17. Kromer R, Spitzer MS. Bruch’s membrane opening minimum rim width measurement with SD-OCT: A method to correct for the opening size of Bruch’s membrane. Hindawi J Ophthalmol. 2017; 2017: 8963267. doi: 10.1155/2017/8963267

18. Rhodes LA, Huisingh CE, Quinn AE, McGwin Jr G, LaRussa F, Box D, et al. Comparison of Bruch’s membrane opening-minimum rim width among those with normal ocular health by race. Am J Ophthalmol. 2017; 174(2): 113-118. doi: 10.1016/j.ajo.2016.10.022

19. Enders Ph, Adler W, Schaub F, Hermann MM, Diestelhorst M, Dietlein Th, et al. Optimization strategies for Bruch’s membrane opening minimum rim area calculation: Sequential versus simultaneous minimization. Sci Rep. 2018; 32(2): 314-323. doi: 10.1038/eye.2017.306

20. Stowell Ch, Burgoyne C, Tamm ER, Ethier CR. Biomechanical aspects of axonal damage in glaucoma: A brief review. Exp Eye Res. 2017; 157: 13-19. doi: 10.1016/j.exer.2017.02.005

21. Zhukova SI. OCT and OCTA: Clinical cases. Atlas with interactive content. Moscow: Aprel; 2019. (In Russ.).

22. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005; 139(3): 509-517. doi: 10.1016/j.ajo.2004.10.047

23. Pagon RA. Ocular coloboma. Surv Ophthalmol. 1981; 25(4): 223-236. doi: 10.1016/0039-6257(81)90092-8

24. Lee KM, Woo SJ, Hwang JM. Evaluation of congenital excavated optic disc anomalies with spectral-domain and swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2014; 252(11): 1853-1860. doi: 10.1007/s00417-014-2680-9

25. Gottlieb JL, Prieto DM, Vander JF, Brown GC, Tasman WS. Peripapillary staphyloma. Am J Ophthalmol. 1997; 124(2): 249-251. doi: 10.1016/s0002-9394(14)70796-2

26. May CA. Non-vascular smooth muscle cells in the human choroid: Distribution, development and further characterization. J Anat. 2005; 207(4): 381-390. doi: 10.1111/j.1469-7580.2005.00460.x

27. Yoshida T, Katagiri S, Yokoi T, Nishina S, Azuma N. Optical coherence tomography and video recording of a case of bilateral contractile peripapillary staphyloma. Am J Ophthalmol Case Rep. 2019; 13: 66-69. doi: 10.1016/j.ajoc.2018.12.002

28. Hood DC, De Cuir N, Blumberg DM, Liebmann JM, Jarukasetphon R, Ritch R, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2016; 5(6): 4. doi: 10.1167/tvst.5.6.4

29. Kim YW, Choi JJ, Girard MJA, Mari JM, Choi DG, Park KH. Longitudinal observation of border tissue configuration during axial elongation in childhood. Invest Ophthalmol Vis Sci. 2021; 62(4): 10. doi: 10.1167/iovs.62.4.10

30. Elía N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol. 2012; 96(5): 665-670. doi: 10.1136/bjophthalmol-2011-300916

31. Barrio-Barrio J, Noval S, Galdós M, Ruiz-Canela M, Bonet E, Capote M, et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol. 2013; 91(1): e56-63. doi: 10.1111/j.1755-3768.2012.02562.x

32. Rao A, Sahoo B, Kumar M, Varshney G, Kumar R. Retinal nerve fiber layer thickness in children <18 years by spectral-domainoptical coherence tomography. Semin Ophthalmol. 2013; 28(2): 97-102. doi: 10.3109/08820538.2012.760626

33. Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013; 156(6): 1238-1243.e1. doi: 10.1016/j.ajo.2013.07.021

34. Öner V, Özgür G, Türkyilmaz K, Şekeryapan B, Durmus M. Effect of axial length on retinal nerve fiber layer thickness in children. Eur J Ophthalmol. 2014; 24(2): 265-272. doi: 10.5301/ejo.5000345

35. Al-Haddad C, Antonios R, Tamim H, Noureddin B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br J Ophthalmol. 2014; 98(4): 502-506. doi: 10.1136/bjophthalmol-2013-304345

36. Queirós T, Freitas C, Guimarães S. Valores de referência da tomografia de coerência optica na idade pediátrica [Normative database of optical coherence tomography parameters in childhood]. Acta Med Port. 2015; 28(2): 148-157.

37. Gürağaç FB, Totan Y, Güler E, Tenlik A, Ertuğrul İG. Normative spectral domain optical coherence tomography data in healthy Turkish children. Semin Ophthalmol. 2017; 32(2): 216-222. doi: 10. 3109/08820538.2015.1053625

38. Goh JP, Koh V, Chan YH, Ngo C. Macular ganglion cell and retinal nerve fiber layer thickness in children with refractive errors – An optical coherence tomography study. J Glaucoma. 2017; 26(7): 619-625. doi: 10.1097/IJG.0000000000000683

39. Pawar N, Maheshwari D, Ravindran M, Ramakrishnan R. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population. Indian J Ophthalmol. 2017; 65(10): 955-962. doi: 10.4103/ijo.IJO_71_17

40. Bueno-Gimeno I, Espana-Gregori E, Gene-Sampedro A, Ondategui-Parra JC, Zapata-Rodriguez CJ. Variations of OCT measurements corrected for the magnification effect according to axial length and refractive error in children. J Innov Opt Health Sci. 2018; 1: 185001.

41. Larsson E, Molnar A, Holmström G. Repeatability, reproducibility and interocular difference in the assessments of optic nerve OCT in children – A Swedish population-based study. BMC Ophthalmol. 2018; 18(1): 270. doi: 10.1186/s12886-018-0940-x

42. Gama R, Santos JC, Costa RS, Costa DC, Eiro N. Optical coherence tomography analysis of the inner retinal layers in children. Can J Ophthalmol. 2018; 53: 614-620. doi: 10.1016/j.jcjo.2018.02.025

43. Turk A, Ceylan OM, Arici C, Keskin S, Erdurman C, Durukan AH, et al. Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol. 2012; 153: 552-559.

44. Yanni SE, Wang J, Cheng CS, Locke KI, Wen Y, Birch DG, et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol. 2013; 155(2): 354-360. doi: 10.1016/j.ajo.2012.08.010

45. Dave P, Jethani J, Shah J. Applicability of the ISNT and IST rules on retinal nerve fiber layer measurement on spectral-domain optical coherence tomography in normal Indian children. Graefes Arch Clin Exp Ophthalmol. 2015; 253: 1795-1799. doi: 10.1007/s00417-015-2980-8

46. Lee JWY, Yau GSK, Woo TTY, Lai JSM. The association between macular thickness and peripapillary retinal nerve fiber layer thickness in Chinese children. Medicine. 2015; 94: e567. doi: 10.1097/MD.0000000000000567

47. Perez-Garcia D, Ibanez-Alperte J, Remon L, Cristobal JA, Sanchez-Cano A, Pinilla I. Study of spectral-domain optical coherence tomography in children: normal values and influence of age, sex, and refractive status. Eur J Ophthalmol. 2016; 26: 135-141.

48. Eslami Y, Vahedian Z, Moghimi S, Bazvand F, Salari H, Sha-habinejad M, et al. Peripapillary retinal nerve fiber layer thickness in normal Iranian children measured with optical coherence tomography. J Ophthalmic Vis Res. 2018; 13: 453-457. doi: 10.4103/jovr.jovr_186_17

49. Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children ages 0–5 years. Am J Ophthalmol. 2019; 208: 323-330. doi: 10.1016/j.ajo.2019.06.025

50. Tsai DC, Huang N, Hwu JJ, Jueng RN, Chou P. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012; 56: 362-370. doi: 10.1007/s10384-012-0142-7

51. Chen L, Huang J, Zou H, Xue W, Ma Y, He X, et al. Retinal nerve fiber layer thickness in normal Chinese students aged 6 to 17 years. Investig Ophthalmol Vis Sci. 2013; 54: 7990-7997. doi: 10.1167/iovs.12-11252

52. Zhu BD, Li SM, Li H, Liu LR, Wang Y, Yang Z, et al. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: The Anyang Childhood Eye Study. Investig Ophthalmol Vis Sci. 2013; 54: 8104-8111. doi: 10.1167/iovs.13-11958

53. Bhoiwala DL, Simon JW, Raghu P, Krishnamoorthy M, Todani A, Gandham SB, et al. Optic nerve morphology in normal children. J AAPOS. 2015; 19: 531-534. doi: 10.1016/j.jaapos.2015.09.008

54. Kang MT, Li SM, Li H, Li L, Li SY, Zhu BD, et al. Peripapillary retinal nerve fiber layer thickness and its association with refractive error in Chinese children: The Anyang Childhood Eye Study. Clin Exp Ophthalmol. 2016; 44: 701-709. doi: 10.1111/ceo.12764

55. Grundy SJ, Tshering L, Wanjala SW, Diamond MB, Audi MS, Prasad S, et al. Retinal parameters as compared with head circumference, height, weight, and body mass index in children in Kenya and Bhutan. Am J Trop Med Hyg. 2018; 99: 482-488. doi: 10.4269/ajtmh.17-0943

56. Yabas Kiziloglu O, Toygar O, Toygar B, Hacimustafaoglu AM. Retinal nerve fiber layer and macula thickness with spectral domain optical coherence tomography in children: Normal values, repeatability and the influence of demographic and ocular parameters. Turkiye Klinikleri J Ophthalmol. 2018; 27: 28-34. doi: 10.5336/ophthal.2016-53972

57. Ayala M, Ntoula E. Retinal fiber layer thickness measurement in normal paediatric population in Sweden using optical coherence tomography. J Ophthalmol. 2016; 2016: 4160568. doi: 10.1155/2016/4160568

58. Ali AN, Farag RK, El Wahab TAA, Ghanem AA, Hababeh M. Macular and retinal nerve fiber layer analysis by optical coherence tomography in normal children. ARC J Ophthalmol. 2018; 3: 17-28.

59. Banc A, Ungureanu MI. Normative data for optical coherence tomography in children: A systematic review. Eye (Lond). 2021; 35(3): 714-738. doi: 10.1038/s41433-020-01177-3

60. Kai-Shun Leung Ch, Cheung Carol Y-L, Weinreb RN, Qiu Q, Liu Sh, Li H, et al. Retinal nerve fiber layer imaging with spectraldomain optical coherence tomography: A variability and diagnostic performance study. Ophthalmology. 2009; 116: 1257-1263. doi: 10.1016/j.ophtha.2011.10.010

61. Brodsky MC. Optic nerve hypoplasia: “Neural guidance” and the role of mentorship. J Neuroophthalmol. 2020; 40(1): S21-S28. doi: 10.1097/WNO.0000000000001003

62. Kim YW, Choi JJ, Girard MJA, Mari JM, Choi DG, Park KH. Longitudinal observation of border tissue configuration during axial elongation in childhood. Invest Ophthalmol Vis Sci. 2021; 62(4): 10. doi: 10.1167/iovs.62.4.10

63. Samarawickrama C, Wang XY, Huynh SC, Burlutsky G, Stapleton F, Mitchell P. Effects of refraction and axial length on childhood optic disk parameters measured by optical coherence tomography. Am J Ophthalmol. 2007; 144(3): 459-461. doi: 10.1016/j.ajo.2007.05.010

64. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990; 300(1): 5-25. doi: 10.1002/cne.903000103

65. Cuenca N, Ortuño-Lizarán I, Pinilla I. Cellular characterization of OCT and outer retinal bands using specific immunohistochemistry markers and clinical implications. Ophthalmology. 2018; 125(3): 407-422. doi: 10.1016/j.ophtha.2017.09.016

66. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009; 50(7): 3432-3437. doi: 10.1167/iovs.08-2970

67. Early Treatment Diabetic Retinopathy Study Research Group. Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Ophthalmology. 1991; 98(Suppl 5): 834-840.

68. Provis JM, Dubis AM, Maddess T, Carroll J. Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog Retin Eye Res. 2013; 35: 63-81. doi: 10.1016/j.preteyeres.2013.01.005

69. Lee H, Purohit R, Patel A, Papageorgiou E, Sheth V, Maconachie G, et al. In vivo foveal development using optical coherence tomography. Invest Ophthalmol Vis Sci. 2015; 56(8): 4537-4545. doi: 10.1167/iovs.15-16542

70. Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children 0–5 years of age. Am J Ophthalmol. 2019; 208: 323-330. doi: 10.1016/j.ajo.2019.06.025

71. Alabduljalil T, Westall CA, Reginald A, Farsiu S, Chiu SJ, Arshavsky A, et al. Demonstration of anatomical development of the human macula within the first 5 years of life using handheld OCT. Int Ophthalmol. 2019; 39(7): 1533-1542. doi: 10.1007/s10792-018-0966-3

72. Yoo YJ, Hwang JM, Yang HK. Inner macular layer thickness by spectral domain optical coherence tomography in children and adults: A hospital-based study. Br J Ophthalmol. 2019; 103(11): 1576-1583. doi: 10.1136/bjophthalmol-2018-312349

73. Galdos M, Barrio-Barrio J, Noval S, Ruiz-Canela M, Bonet E, Capote M, et al. Multicenter macular ganglion cell analysis: Normative paediatric reference range. Acta Ophthalmol. 2014; 92(4): e326-7.47. doi: 10.1111/aos.12316

74. Totan Y, Gürağaç FB, Güler E. Evaluation of the retinal ganglion cell layer thickness in healthy Turkish children. J Glaucoma. 2015; 24(5): e103-e108. doi: 10.1097/IJG.0000000000000168

75. Maldonado RS, O’Connell RV, Sarin N, Freedman SF, Wallace DK, Cotton CM, et al. Dynamics of human foveal development after premature birth. Ophthalmology. 2011; 118(12): 2315-2325. doi: 10.1016/j.ophtha.2011.05.028

76. Hood DC, Raza AS, Gustavo V de Moraes C, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013; 32: 1-21. doi: 10.1016/j.preteyeres.2012.08.003

77. Fujihara FMF, de Arruda Mello PA, Lindenmeyer RL, Pakter HM, Lavinsky J, et al. Individual macular layer evaluation with spectral domain optical coherence tomography in normal and glaucomatous eyes. Clin Ophthalmol. 2020; 14: 1591-1599. doi: 10.2147/OPTH.S256755

78. Go MS, Barman NR, Kelly MP, House RJ, Rotruck JC, El-Dairi MA, et al. Overhead mounted optical coherence tomography in childhood glaucoma evaluation. J Glaucoma. 2020; 29(9): 742-749. doi: 10.1097/IJG.0000000000001567

79. Shchuko AG, Iureva TN, Chekmareva LT, Malyshev VV. Glaucoma and pathology of the iris. Moscow; 2009. (In Russ.).

80. Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faÿsse M. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: A prospective study. J Ophthalmol. 2014; 2014: 395189. doi: 10.1155/2014/395189


Review

For citations:


Zhukova S.I., Iureva T.N. Optical coherence tomography in the diagnosis and monitoring of congenital and juvenile glaucoma. Acta Biomedica Scientifica. 2022;7(2):147-166. (In Russ.) https://doi.org/10.29413/ABS.2022-7.2.16

Views: 907


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)