Preview

Acta Biomedica Scientifica

Advanced search

Modern genetic and immunological aspects of the pathogenesis of impaired consolidation of fractures (literature review)

https://doi.org/10.29413/ABS.2022-7.2.6

Abstract

The aim of this article is to analyze the genetic and immunological mechanisms of the development of fracture consolidation disorders at the present scientific stage.

Materials and methods. The search for literary sources was carried out in the open electronic databases of scientific literature PubMed and eLIBRARY. Search depth – 10 years.

Results. The review analyzes the literature data on the current state of the study of the molecular genetic mechanisms of reparative regeneration including the development of fracture consolidation disorders. The mechanisms of the most important links of pathogenesis which most often lead to various violations of the processes of bone tissue repair are considered.

Conclusion. The process of bone tissue repair is multifaceted, and many factors are involved in its implementation, however, we would like to note that the leading role in the course of reparative regeneration is played by a personalized genetically programmed response to this pathological condition. Nevertheless, despite the undeniable progress of modern medicine in studying the processes of bone recovery after a fracture, there are still many “white” spots in this issue, which dictates the need for further comprehensive study in order to effectively treat patients with impaired consolidation.

About the Authors

A. M. Miromanov
Chita State Medical Academy
Russian Federation

Dr. Sc. (Med.), Professor, Head of the Department of Traumatology and Orthopedics

Gorkogo str. 39A, Chita 672000



K. A. Gusev
Chita State Medical Academy
Russian Federation

Cand. Sc. (Med.), Teaching Assistant at the Department of Traumatology and Orthopedics

Gorkogo str. 39A, Chita 672000



A. N. Staroselnikov
Chita State Medical Academy
Russian Federation

Teaching Assistant at the Department of Traumatology and Orthopedics

Gorkogo str. 39A, Chita 672000



O. B. Mironova
Chita State Medical Academy
Russian Federation

Cand. Sc. (Med.), Associate Professor at the Department of Traumatology and Orthopedics

Gorkogo str. 39A, Chita 672000



N. A. Miromanova
Chita State Medical Academy
Russian Federation

Dr. Sc. (Med.), Docent, Head of the Department of Children’s Infections

Gorkogo str. 39A, Chita 672000



References

1. Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the effectiveness of biophysical methods of osteogenesisstimulation: review. Traumatology and Orthopedics of Russia. 2021; 27(1): 86-96. (In Russ.). doi: 10.21823/2311-2905-2021-27-1-86-96

2. Zaiss MM, Frey B, Hess A, Zwerina J, Luther J, Nimmerjahn F, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010; 184(12): 7238-7246. doi: 10.4049/jimmunol.0903841

3. Ding Z-C, Lin Y-K, Gan Y-K, Tang T-T. Molecular pathogenesis of fracture nonunion. J Orthop Translat. 2018; 14: 45-56. doi: 10.1016/j.jot.2018.05.002

4. Zhang J, Yang Y, Yang Z, Li T, Chen F. Snapshot: Targeting macrophages as a candidate for tissue regeneration. Curr Issues Mol Biol. 2018; 29: 37-48. doi: 10.21775/cimb.029.037

5. Miromanov AM, Gusev KA, Miromanova NA. Influence of polymorphism of gene TGFβ1-25Arg>Pro on expression trans forming growth factor TGFβ1 at patients with disturbance of consolidation of fractures in Zabaykalsky Krai. Fundamental Research. 2015; 1(5): 1008-1012. (In Russ.).

6. Gusev KA, Miromanov AM, Miromanova NA, Vitkovsky YuA. Influence of polymorphism of gene EGFR-2073A>T on expression transforming growth factor EGF at patients with disturbance of consolidation of fractures of long bones of extremities. The Transbaikalian Medical Bulletin. 2016; 3: 25-29. (In Russ.). URL: http://zabmedvestnik.ru/arhiv-nomerov/nomer-3-za-2016-god/polimorfizm-gena-egfr-2073a-t-i-jekspressija-rostovogo-faktora-egfu-bolnyh-s-narusheniem-konsolidacii-perelomov-dlinnyh-kostejkonechnostej/588/5.pdf [date of access: 01.12.2021].

7. Novikova EL, Bakalenko NI, Nesterenko AY, Kulakova MA. Hox genes and animal regeneration. Онтогенез. 2016; 47(4): 209-218. (In Russ.). doi: 10.7868/S0475145016040078

8. Zimmermann G, Schmeckenbecher KHK, Boeuf S, Weiss S, Bock R, Moghaddam A, et al. Differential gene expression analysis in fracture callus of patients with regular and failed bone healing. Injury. 2012; 43(3): 347-356. doi: 10.1016/j.injury.2011.10.031

9. Waki T, Lee SY, Niikura T, Iwakura T, Dogaki Y, Okumachi E, et al. Profiling microRNA expression in fracture nonunions: Potential role of microRNAs in nonunion formation studied in a rat model. Bone Joint J. 2015; 97-В(8): 1144-1151. doi: 10.1302/0301-620X.97B8.34966

10. Wang H, Xie Z, Hou T, Li Z, Huang K, Gong J, et al. MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell Physiol Biochem. 2017; 41(2): 530-542. doi: 10.1159/000457013

11. He B, Zhang ZK, Liu J, He YX, Tang T, Li J, et al. Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci. 2016; 17(8): 1260. doi: 10.3390/ijms17081260

12. Guimarães JM, Guimarães IC do V, Duarte MEL, Vieira T, Vianna VF, Fernandes MBC, et al. Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Orthop Res. 2013; 31(12): 1971-1979. doi: 10.1002/jor.22455

13. Movchan OS, Olifirenko OI. Autotransplantation native marrow at defective fracture consolidation. Trauma. 2016; 17(2): 69-72. doi: 10.22141/1608-1706.2.17.2016.74658

14. Skripnikova IA, Alikhanova NA, Kolchinа MA, Myagkova MA, Kosmatova OV. Atherosclerosis and osteoporosis. Common targets for the effects of cardiovascular and anti-osteoporotic drugs (Part I). The effect of cardiovascular drugs on bone strength. Rational Pharmacotherapy in Cardiology. 2019; 15(1): 69-76. (In Russ.). doi: 10.20996/1819-6446-2019-15-1-69-76

15. Parakhonskiy AP. The mechanisms of tissue regeneration. Zametki uchenogo. 2018; 6(31): 10-18.

16. Matchin AA, Stadnikov AA, Nosov EV, Kiriakidi SK. Morphological and immunohistochemical characteristics of experimental mandibular fractures healing process. Journal of Anatomy and Histopathology. 2019; 8(1): 44-48. (In Russ.). doi: 10.18499/2225-7357-2019-8-1-44-48

17. Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: Insights from skeletal muscle regeneration. FEBS Lett. 2017; 591(19): 3007-3021. doi: 10.1002/1873-3468.12703

18. Schlundt C, Khassawna TEl, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018; 106: 78-89. doi: 10.1016/j.bone.2015.10.019

19. Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2013; 2: 373. doi: 10.1038/bonekey.2013.107

20. Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020; 11: 386. doi: 10.3389/fendo.2020.00386

21. Sivanathan KN, Rojas-Canales DM, Hope CM, Krishnan R, Carroll RP, Gronthos S, et al. Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells. 2015; 33(9): 2850-2863. doi: 10.1002/stem.2075

22. Kim Y-G, Park J-W, Lee J-M, Suh J-Y, Lee J-K, Chang B-S, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Arch Oral Biol. 2014; 59(9): 897-905. doi: 10.1016/j.archoralbio.2014.05.009

23. Noronha N de C, Mizukami A, Caliari-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019; 10(1): 131. doi: 10.1186/s13287-019-1224-y

24. Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jamsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017; 8(1): 277. doi: 10.1186/s13287-017-0730-z

25. Philipp D, Suhr L, Wahlers T, Choi YH, Paunel-Gorgulu A. Preconditioning of bone marrow-derived mesenchymal stem cells highly strengthens their potential to promote IL-6-dependent M2b polarization. Stem Cell Res Ther. 2018; 9(1): 286. doi: 10.1186/s13287-018-1039-2

26. Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng A. 2017; 23(21-22): 1212-1220. doi: 10.1089/ten.tea.2016.0548

27. Camacho-Cardenosa M, Camacho-Cardenosa A, Timon R, Olcina G, Tomas-Carus P, Brazo-Sayavera J. Can hypoxic conditioning improve bone metabolism? A systematic review. Int J Environ Res Public Health. 2019; 16(10): 1799. doi: 10.3390/ijerph16101799

28. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; 40: 2. doi: 10.1186/s41232-019-0111-3

29. Gershtein ES, Timofeev YuS, Zuev AA, Kushlinskii NE. RANK/RANKL/OPG ligand-receptor system and its role in primary bone neoplasms (literature analysis and own data). Advances in Molecular Oncology. 2015; 2(3): 51-59. (In Russ.). doi: 10.17650/2313-805X-2015-2-3-51-59

30. Walsh MC, Choi Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front. Immunol. 2014; 5: 511. doi: 10.3389/fimmu.2014.00511

31. Baht GS, O’Young J, Borovina A, Chen H, Tye CE, Karttunen M, et al. Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem J. 2010; 428(3): 385-395. doi: 10.1042/BJ20091864

32. Köttstorfer J, Thomas A, Gregori M, Kecht M, Kaiser G, Eipeldauer S, et al. Are OPG and RANKL involved in human fracture healing? J Orthop Res. 2014; 32(12): 1557-1561. doi: 10.1002/jor.22723

33. Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jorgensen HRI, Abrahamsen B. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int. 2015; 76(2): 90-97. doi: 10.1007/s00223-004-0074-4

34. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008; 4(2): 68-75. doi: 10.4161/org.4.2.5851

35. Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis. 2015; 11(3): 95-104. doi: 10.1080/15476278.2015.1086052

36. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127(3): 469-480. doi: 10.1016/j.cell.2006.10.018

37. Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and regeneration – What do we know so far. Front Cell Dev Biol. 2019; 6: 170. doi: 10.3389/fcell.2018.00170

38. MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012; 4(12): a007880. doi: 10.1101/cshperspect.a007880

39. Enzo MV, Rastrelli M, Rossi CR, Hladnik U, Segat D. The Wnt/beta-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015; 3: 1. doi: 10.1186/s40591-015-0038-2

40. Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 2012; 4(11): a007906. doi: 10.1101/cshperspect.a007906

41. Bao Q, Chen S, Qin H, Feng J, Liu H, Liu D et al. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci. Rep. 2017; 7(1): 2695. doi: 10.1038/s41598-017-02705-0

42. Wang T, Zhang X, Bikle DD. Osteogenic differentiation of periosteal cells during fracture healing. J Cell Physiol. 2017; 232(5): 913-921. doi: 10.1002/jcp.25641

43. Regard JB, Zhong Z, Williams BO, Yang Y. Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb Perspect Biol. 2012; 4(12): a007997. doi: 10.1101/cshperspect.a007997

44. Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis. 2012; 33(3): 483-491. doi: 10.1093/carcin/bgr305

45. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones. 2007; 6(4): 279-294. doi: 10.14310/horm.2002.1111024

46. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009; 113(3): 517-525. doi: 10.1182/blood-2008-03-145169

47. Balemans W, Hul WV. The genetics of low-density lipoprotein receptor-related protein 5 in bone: A story of extremes. Endocrinology. 2007; 148(6): 2622-2629. doi: 10.1210/en.2006-1352

48. Schulze J, Seitz S, Saito H, Schneebauer M, Marshall RP, Baranowsky A, et al. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One. 2010; 5(4): e10309. doi: 10.1371/journal.pone.0010309

49. Cao J, Wei Y, Lian J, Yang L, Zhang X, Xie J, et al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med. 2017; 40(2): 378-388. doi: 10.3892/ijmm.2017.3037

50. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011; 112(12): 3491-3501. doi: 10.1002/jcb.23287

51. Baum R, Gravallese EM. Impact of inflammation on the osteoblast in rheumatic diseases. Curr Osteoporos Rep. 2014; 12(1): 9-16. doi: 10.1007/s11914-013-0183-y

52. Kureel J, John AA, Prakash R, Singh D. MiR 376c inhibits osteoblastogenesis by targeting Wnt3 and ARF-GEF-1-facilitated augmentation of beta-catenin transactivation. J Cell Biochem. 2018; 119(4): 3293-3303. doi: 10.1002/jcb.26490

53. Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: Balancing adipogenesis and osteogenesis. BMB Rep. 2015; 48(6): 319-323. doi: 10.5483/BMBRep.2015.48.6.206

54. Vimalraj S, Selvamurugan N. MicroRNAs: Synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2013; 15: 7-18.

55. Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep. 2016; 14(1): 623-629. doi: 10.3892/mmr.2016.5335

56. Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, et al. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res. 2017; 32(12): 2466-2475. doi: 10.1002/jbmr.3230

57. Lojk J, Marc J. Roles of non-canonical Wnt signalling pathways in bone biology. Int J Mol Sci. 2021; 22(19): 10840. doi: 10.3390/ijms221910840

58. Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017; 18(6): 375-388. doi: 10.1038/nrm.2017.11

59. Gao B, Song H, Bishop K, Elliot G, Garrett L, English M, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011; 20(2): 163-176. doi: 10.1016/j.devcel.2011.01.001

60. Struhl G, Casal J, Lawrence PA. Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity. Development. 2012; 139(19): 3665-3674. doi: 10.1242/dev.083550

61. Gao B. Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol. 2012; 101: 263-295. doi: 10.1016/B978-0-12-394592-1.00008-9

62. Wan Y, Lantz B, Cusack BJ, Szabo-Rogers HL. Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep. 2018; 8(1): 18021. doi: 10.1038/s41598-018-36742-0

63. Qiu W, Chen L, Kassem M. Activation of non-canonical Wnt/JNK рathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal). stem cells. Biochem Biophys Res Commun. 2011; 413(1): 98-104. doi: 10.1016/j.bbrc.2011.08.061

64. Hwang S-G, Yu S-S, Lee S-W, Chun J-S. Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett. 2005; 579(21): 4837-4842. doi: 10.1016/j.febslet.2005.07.067

65. Uehara S, Udagawa N, Mukai H, Ishihara A, Maeda K, Yamashita T, et al. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal. 2017; 10(494): eaan0023. doi: 10.1126/scisignal.aan0023

66. Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bonecartilage interface in osteoarthritis. Int J Mol Sci. 2019; 20(18): 4653. doi: 10.3390/ijms20184653

67. Nam D, Mau E, Wang Y, Wright D, Silkstone D, Whetstone H, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One. 2012; 7(6): e40044. doi: 10.1371/journal.pone.0040044

68. Grassi F, Cattini L, Gambari L, Manferdini C, Piacentini A, Gabusi E, et al. T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells in vitro. J Tissue Eng Regen Med. 2016; 10(4): 305-314. doi: 10.1002/term.1727

69. Pacifici R. Osteoimmunology and its implications for transplantation. Am J Transplant. 2013; 13(9): 2245-2254. doi: 10.1111/ajt.12380

70. Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017; 15(4): 367-375. doi: 10.1007/s11914-017-0381-0

71. Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, et al. IL-17-producing γδ T cells enhance bone regeneration. Nat Commun. 2016; 7: 10928. doi: 10.1038/ncomms10928

72. Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells. 2014; 6(5): 526-539. doi: 10.4252/wjsc.v6.i5.526

73. Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk H-D. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol. 2015; 6: 184. doi: 10.3389/fphar.2015.00184

74. Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013; 5(177): 177ra36. doi: 10.1126/scitranslmed.3004754

75. Toben D, Schroeder I, El Khassawna T, Mehta M, Hoffmann J-E, Frisch J-T, et al. Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res. 2011; 26(1): 113-124. doi: 10.1002/jbmr.185

76. Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, et al. Erratum: Exposure to a youthful circulation rejuvenates bone repair through modulation of b-catenin. Nat Commun. 2015; 6: 7761. doi: 10.1038/ncomms8761

77. Sun G, Wang Y, Ti Y, Wang J, Zhao J, Qian H. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells. Clin Exp Pharmacol Physiol. 2017; 44(4): 455-462. doi: 10.1111/1440-1681.12719

78. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009; 5(12): 667-676. doi: 10.1038/nrrheum.2009.217

79. Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014; 64: 155-165. doi: 10.1016/j.bone.2014.03.052

80. Yang S, Ding W, Feng D, Gong H, Zhu D, Chen B, et al. Loss of B cell regulatory function is associated with delayed healing in patients with tibia fracture. APMIS. 2015; 123(11): 975-985. doi: 10.1111/apm.12439


Review

For citations:


Miromanov A.M., Gusev K.A., Staroselnikov A.N., Mironova O.B., Miromanova N.A. Modern genetic and immunological aspects of the pathogenesis of impaired consolidation of fractures (literature review). Acta Biomedica Scientifica. 2022;7(2):49-64. (In Russ.) https://doi.org/10.29413/ABS.2022-7.2.6

Views: 885


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)