Ultraviolet crosslinking of corneal collagen in patients with thin cornea. Literature review
https://doi.org/10.29413/ABS.2021-6.6-1.26
Abstract
For the treatment of progressive keratoconus in the early stages, corneal collagen crosslinking is currently actively used. This technique is based on the stabilization of the pathological process by increasing the biomechanical properties of the own cornea. The thickness of the cornea less than 400 microns significantly limits the possibility of a standard cross-linking procedure performing.
The article analyzes the literature data on the use of various methods of corneal crosslinking with a corneal thickness of less than 400 microns, which signifi cantly limits the possibilities of the standard procedure.
It is known, that during crosslinking, at the initial stage, de-epithelialization of the cornea is performed, which, in the postoperative period, leads to a pronounced corneal syndrome. This determined the direction of the fi rst modifi cations of the technique associated with the use of partial de-epithelialization or its complete absence. Later, during cross-linking of “thin” corneas, techniques with the use of additional covering materials were actively used in order to replenish the missing corneal tissue of the patient during the UV irradiation procedure. Among them are the use of a soft contact lens without an ultraviolet fi lter, the use of a corneal lenticule obtained after SMILE surgery, the use of a protective fl ap of the donor cornea obtained using a femtosecond laser from the residual stroma of the corneal disc after descemet membrane transplantation or posterior lamellar keratoplasty. The variety of the proposed modifications and the ongoing search for better options indicate the demand for this technology and the need for further research, taking into account the individual characteristics of the patient’s ectasia.
About the Authors
A. V. TereshchenkoRussian Federation
Dr. Sc. (Med.), Director
Svyatoslava Fedorova str. 5, Kaluga 248007, Russian Federation
I. G. Trifanenkova
Russian Federation
Dr. Sc. (Med.), Deputy Director for Research
Svyatoslava Fedorova str. 5, Kaluga 248007, Russian Federation
Yu. Y. Golubeva
Russian Federation
Ophthalmologist at the Department of Opto-Reconstructive and Refractive Corneal Surgery
Svyatoslava Fedorova str. 5, Kaluga 248007, Russian Federation
S. K. Demianchenko
Russian Federation
Cand. Sc. (Med.), Head of the Department of Opto-Reconstructive and Refractive Corneal Surgery
Svyatoslava Fedorova str. 5, Kaluga 248007, Russian Federation
E. N. Vishnyakova
Russian Federation
Ophthalmologist at the Department of Opto-Reconstructive and Refractive Corneal Surgery
Svyatoslava Fedorova str. 5, Kaluga 248007, Russian Federation
References
1. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998; 42(4): 297-319. doi: 10.1016/s0039-6257(97)00119-7
2. Bikbov MM, Bikbova GM. Corneal ectasia. Moscow: Ophthalmology; 2011. (In Russ.)
3. Wheeler J, Hauser MA, Afshari NA, Allingham RR, Liu Y. The genetics of keratoconus: A review. Reprod Sys Sex Disord. 2012; 6: 001. doi: 10.4172/2161-038X.S6-001
4. Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int. 2015; 2015: 795738. doi: 10.1155/2015/795738
5. Zadnik K, Barr JT, Edrington TB, Everett DF, Jameson M, McMahon TT, et al. Baseline fi ndings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study. Invest Ophthalmol Vis Sci. 1998; 39(13): 2537-2546.
6. WollensakG, SpoerlE, SeilerT. Riboflavin/ultraviolet-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135(5): 620-627. doi: 10.1016/s0002-9394(02)02220-1
7. Bikbov MM, Khalimov AR, Usubov EL. Ultraviolet corneal crosslinking. Annals of the Russian Academy of Medical Sciences. 2016; 71(3): 224-232. (In Russ.). doi: 10.15690/vramn562
8. Deshmukh R, Hafezi F, Kymionis GD, Kling S, Shah R, Padmanabhan P, et al. Current concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019; 67(1): 8-15. doi: 10.4103/ijo.IJO_1403_18
9. Solodkova YeG, Fokin VP. Experience of using a modified technique for treating progressive keratoconus based on corneal collagen crosslinking with femtosecond formation of an intrastromal pocket. Saratov Journal of Medical Scientifi c Research. 2017; 13(2): 431-434. (In Russ.).
10. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003; 29(9): 1786-1790. doi: 10.1016/s0886-3350(03)00343-2
11. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011; 52(12): 9048-9052. doi: 10.1167/iovs.11-7818
12. McQuaid R, Li J, Cummings A, Mrochen M, Vohnsen B. Second-harmonic reflection imaging of normal and accelerated corneal crosslinking using porcine corneas and the role of intraocular pressure. Cornea. 2014; 33(2): 125-130. doi: 10.1097/ICO.0000000000000015
13. Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in ten cats. Vet Ophthalmol. 2015; 18(2): 95-104. doi: 10.1111/vop.12112
14. Anisimov SI, Anisimova SYu, Zolotorevskiy KA. Dynamics of changes in visual acuity and topographic parameters after personalized (local) crosslinking. Sovremennye tekhnologii kataraktal’noy i refraktsionnoy khirurgii – 2011: Sbornik nauchnykh statey. Moscow; 2011: 308-310. (In Russ.)
15. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004; 23(1): 43-49. doi: 10.1097/00003226-200401000-00008
16. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: Bilateral study. J Cataract Refract Surg. 2012; 38(2): 283-291. doi: 10.1016/j.jcrs.2011.08.030
17. Pinelli R, Marzouky MM, El-Shawaf HI. Tensoactive-mediated transepithelial corneal cross-linking – first laboratory report. European Ophthalmic Review. 2009; 3(2): 67-70.
18. Pinelli R. C3-R treatment opens new frontiers for keratoconus and corneal ectasia. Eyeword. 2007; 34: 36-39.
19. Leccisotti A, Islam T. Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg. 2010; 26(12): 942-948. doi: 10.3928/1081597x-20100212-09
20. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmologica. 2013; 92(1): e30-e34. doi: 10.1111/aos.12235
21. Lombardo M, Giannini D, Lombardo G, Serrao S. Randomized controlled trial comparing transepithelial corneal crosslinking using iontophoresis with the Dresden protocol in progressive keratoconus. Ophthalmology. 2017; 124(6): 804-812. doi: 10.1016/j.ophtha.2017.01.040
22. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy SD, et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016; 57(2): 594-613. doi: 10.1167/iovs.13-12595
23. Jouve L, Borderie V, Sandali O, Temstet C, Basli E, Laroche L, et al. Conventional and iontophoresis corneal cross-linking for keratoconus: Efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea. 2017; 36(2): 153-162. doi: 10.1097/ICO.0000000000001062
24. Krueger RR, Ramos-Esteban JC, Kannellopoulos AJ. Staged intrastromal delivery of riboflavin with UVA cross-linking in advanced bullos keratopathy: Laboratory investigation and first clinical case. J Refract Surg. 2008; 24(7): S730-S736. doi: 10.3928/1081597X-20080901-17
25. Pashtayev NP, Zotov VV. Comparative analysis of long-term results of standard and local femto-crosslinking in patients with progressive keratoconus. Vestnik of Orenburg State University. 2014; 12(173): 248-251. (In Russ.)
26. Kymionis G, Diakonis V, Coskunseven E, Jankov M, Yoo SH, Pallikaris IG. Customized pachymetric guided epithelial debridement for corneal collagen cross linking. BMC Ophthalmol. 2009; 9: 10. doi: 10.1186/1471-2415-9-10
27. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal crosslinking: Epithelial Island cross-linking technique. Clin Ophthalmol Auckl NZ. 2014; 8: 1337-1343. doi: 10.2147/OPTH.S66372
28. Cagil N, Sarac O, Can G, Akcay E, Can M. Outcomes of corneal collagen crosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas. Int Ophthalmol. 2017; 37(1): 103-109. doi: 10.1007/s10792-016-0234-3
29. Kaya V, Utine C, Yilmaz O. Efficacy of corneal collagen cross-linking using a custom epithelial debridement technique in thin corneas: A confocal microscopy study. J Refract Surg. 2011; 27(6): 444-450. doi: 10.3928/1081597X-20101201-01
30. Malyugin BE, Izmaylova SB, Shatskikh AV, Merzlov DE, Pronkina SA. Experimental substantiation of the effectiveness of various methods of ribofl avin delivery to the corneal stroma as the initial stage of UV crosslinking. Fyodorov Journal of Ophthalmic Surgery. 2014; 1: 24-29. (In Russ.).
31. Solodkova YeG, Fokin VP, Balalin SV, Melikhova IA. Efficacy and safety of corneal collagen crosslinking in the treatment of progressive keratoconus. Journal of VolgSMU. 2017; 2(62): 91-94. (In Russ.).
32. Iskakov IA, Kostenev SV, Chernykh VV. A new method for performing corneal collagen crosslinking in patients with a thin cornea. Sovremennyye tekhnologii kataraktal’noy i refraktsionnoy khirurgii: Sbornik XIV nauchno-prakticheskoy konferentsii. Moscow; 2013: 228-232. (In Russ.).
33. Jacob S, Kumar D, Agarwal A, Basu S, Sinha P, Agarwal A. Contact lens-assisted collagen cross-linking (CACXL): A new technique for cross-linking thin corneas. J Refract Surg. 2014; 30(6): 366-372. doi: 10.3928/1081597X-20140523-01
34. Vasil’yeva IV, Yegorov VV, Vasil’yev AV. Analysis of the efficacy and safety of corneal collagen crosslinking in patients with corneal thickness less than 400 μm after deepithelialization using a donor corneal lenticule. Practical Medicine. 2017; 9: 110. (In Russ.).
35. Sachdev M, Gupta D, Sachdev G, Sachdev R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015; 41(5): 918-923. doi: 10.1016/j.jcrs.2015.04.007
36. Golubeva YY, Tereshchenko AV, Trifanenkova IG, Vishnyakova YeN, Dem’yanchenko SK. Ultraviolet crosslinking technique in the treatment of progressive keratoconus with a “thin cornea”. Modern Technologies in Ophthalmology. 2019; (4): 59-62. (In Russ.). doi: 10.25276/2312-4911-2019-4-59-62
37. Khalimov AR, Katayev VA, Drozdova GA, Kazakbayeva GM, Khalikov RA. Results of an ex vivo study of a new ophthalmic agent for riboflavin-UV-A-induced collagen cross-linking of thin corneas. Eksperimental’naya i klinicheskaya farmakologiya = Experimental and Clinical Pharmacology. 2018; 81(2): 30-32. (In Russ.).
38. Bikbov MM, Surkova VK, Kazakbayeva GM. Confocal microscopy in keratoconus after simultaneous implantation of myoring rings and corneal crosslinking. Point of View. East-West. 2021; 1: 21-25. (In Russ.).
39. Hwang JS, Lee JH, Wee WR, Kim MK. Effect sofmulticurve RGP contact lensuse on topographic changes in keratoconus. Korean J Ophthalmol. 2010; 24(4): 201-206. doi: 10.3341/kjo.2010.24.4.201
40. Mark HH. Keratoconus appearing after contact lens wear. Eye Ear Nose Throat Mon. 1974; 53(6): 225-226.
41. Alyayeva OO, Ryabenko OI, Tananakina YeM, Yushkova IS. Experience of using Zenlens scleral lenses for visual rehabilitation of patients with irregular cornea. Russian Ophthalmological Journal. 2018; 11(4): 68-74. (In Russ.).
Review
For citations:
Tereshchenko A.V., Trifanenkova I.G., Golubeva Yu.Y., Demianchenko S.K., Vishnyakova E.N. Ultraviolet crosslinking of corneal collagen in patients with thin cornea. Literature review. Acta Biomedica Scientifica. 2021;6(6-1):229-236. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-1.26