Клеточные технологии в регенерации сухожилий: от клетки до тканевой инженерии
https://doi.org/10.29413/ABS.2021-6.2.19
Аннотация
Травмы и дегенеративные изменения сухожилий являются распространёнными повреждениями опорно-двигательного аппарата. Из-за гиповаскулярной природы сухожилие имеет ограниченную естественную способность к восстановлению. При стандартном хирургическом лечении целостность повреждённого сухожилия восстанавливается, однако в большинстве случаев происходит формирование соединительнотканного рубца, нарушающего структурную и механическую функциональность. Недостаточная эффективность традиционного лечения требует поиска альтернативных способов восстановления повреждённых сухожильных тканей. В данной статье обсуждаются новые, эффективные возможности улучшения лечения повреждённых сухожилий с применением клеточных технологий, где одним из основных направлений является применение мезенхимальных стволовых клеток. Благодаря мезенхимальным стволовым клеткам происходит сдвиг от профиброзных и провоспалительных реакций клеток к прорегенеративным. Стволовые клетки, являясь мультипотентными и обладая, в том числе, теногенным потенциалом, считаются перспективным материалом для восстановления повреждённых сухожилий. Также в статье описываются источники прогениторных сухожильных клеток: сухожильные пучки, перициты, основными маркерами которых являются Scx, Mkx – белки суперсемейства факторов транскрипции и Tnmd – трансмембранный гликопротеин.
Рассмотрены ростовые факторы, которые не только усиливают пролиферативную активность мезенхимальных стволовых клеток, но и способствуют экспрессии теногенных генов in vitro, а также выработке коллагена типа I, необходимого для формирования сухожилий. Наряду с ростовыми факторами представлен морфогенетический белок BMP14, усиливающий пролиферацию мезенхимальных стволовых клеток, а также способствующий направленной теногенной дифференцировке данных клеток, подавляя адипогенный и хондрогенный потенциалы.
В последние годы мезенхимальные стволовые клетки применяют как отдельно, так и в сочетании с различными ростовыми факторами и разнообразными трёхмерными конструкциями, обеспечивающими взаимодействие всех типов клеток.
Обсуждаются вопросы новейшей технологии 3D-биопечати, позволяющей изготовить тканеподобные структуры для замены повреждённых тканей, органов. Технология 3D-биопечати способна осуществлять точный пространственно-временной контроль распределения клеток, факторов роста, малых молекул, лекарственных препаратов и биологически активных веществ.
Об авторах
Н. Н. ДреминаРоссия
кандидат биологических наук, старший научный сотрудник лаборатории клеточных технологий и регенеративной медицины,
664003, г. Иркутск, ул. Борцов революции, 1
И. С. Трухан
Россия
кандидат биологических наук, старший научный сотрудник лаборатории клеточных технологий и регенеративной медицины,
664003, г. Иркутск, ул. Борцов революции, 1
И. А. Шурыгина
Россия
доктор медицинских наук, заместитель директора по научной работе, профессор РАН,
664003, г. Иркутск, ул. Борцов революции, 1
Список литературы
1. Walia B, Huang AH. Tendon stem progenitor cells: Understanding the biology to inform therapeutic strategies for tendon repair. JOrthop Res. 2019; 37(6): 1270-1280. doi: 10.1002/jor.24156
2. Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: Development, repair, regeneration, and healing. JOrthop Res. 2015; 33(6): 780-784. doi: 10.1002/jor.22869
3. Schneider M, Angele P, Järvinen TAH, Docheva D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev. 2018; 129: 352-375. doi: 10.1016/j.addr.2017.12.016
4. Пономаренко Н.С., Куклин И.А., Монастырев В.В., Михайлов И.Н., Рудаков А.Н., Бубнов А.С. и др. Сравнение результатов хирургического лечения пациентов с повреждением пяточного сухожилия при диастазе II и III степени по Myerson с использованием сухожилия подошвенной мышцы. Acta biomedica scientifica. 2018; 3(3): 170-175. doi: 10.29413/ABS.2018-3.3.32
5. D’Addona A, Maffulli N, Formisano S, Rosa D. Inflammation in tendinopathy. Surgeon. 2017; 15(5): 297-302. doi: 10.1016/j.surge.2017.04.004
6. Ackerman JE, Studentsova V, Myers M, Buckley MR, Richards MS, Loiselle AE. Non-invasive ultrasound quantification of scar tissue volume identifies early functional changes during tendon healing. JOrthop Res. 2019; 37(11): 2476-2485. doi: 10.1002/jor.24397
7. Howell K, Chien C, Bell R, Laudier D, Tufa SF, Keene DR, et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep. 2017; 23(7): 45238. doi: 10.1038/srep45238
8. Santos AL, Silva CG, Barretto LSS, Franciozi CES, Tamaoki MJS, Almeida FG, et al. Biomechanical evaluation of tendon regeneration with adipose-derived stem cell. J Orthop Res. 2019; 37(6): 1281-1286. doi: 10.1002/jor.24182
9. Bonnin M, Lustig S, Huten D. Extensor tendon ruptures after total knee arthroplasty. Orthop Traumatol Surg Res. 2016; 102(1): 21-31. doi: 10.1016/j.otsr.2015.06.025
10. Леонова С.Н., Монастырев В.В., Пономаренко Н.С. Использование нового подхода к артроскопической аутопластике передней крестообразной связки при ее травматическом повреждении. Политравма. 2019; 4: 52-57.
11. Condello V, Zdanowicz U, Matteo BD, Spalding T, Gelber PE, Adravanti P, et al. Allograft tendons are a safe and effective option for revision ACL reconstruction: A clinical review. Knee Surg Sports Traumatol Arthrosc. 2019; 27(6): 1771-1781. doi: 10.1007/s00167-018-5147-4
12. Gillespie RJ, Knapik DM, Akkus O. Biologic and synthetic grafts in the reconstruction of large to massive rotator cuff tears. J Am Acad Orthop Surg. 2016; 24(12): 823-828. doi: 10.5435/JAAOS-D-15-00229
13. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006; 88(6): 1238-1244. doi: 10.2106/JBJS.E.00524
14. Gupta AK, Hug K, Berkoff DJ, Boggess BR, Gavigan M, Malley PC, et al. Dermal tissue allograft for the repair of massive irreparable rotator cuff tears. Am J Sports Med. 2012; 40(1): 141-147. doi: 10.1177/0363546511422795
15. Smith PA, Stannard JP, Bozynski CC, Kuroki K, Cook CR, Cook JL. Patellar bone-tendon-bone autografts versus quadriceps tendon allograft with synthetic augmentation in a canine model. J Knee Surg. 2020; 33(12): 1256-1266. doi: 10.1055/s-0039-1695040
16. Galatz LM, Gerstenfeld L, Heber-Katz E, Rodeo SA. Tendon regeneration and scar formation: The concept of scarless healing. J Orthop Res. 2015; 33(6): 823-831. doi: 10.1002/jor.22853
17. Thaunat M, Fayard JM, Sonnery-Cottet B. Hamstring tendons or bone-patellar tendon-bone graft for anterior cruciate ligament reconstruction? Orthop Traumatol Surg Res. 2019; 105(1): 89-94. doi: 10.1016/j.otsr.2018.05.014
18. Samora JB, Klinefelter RD. Flexor tendon reconstruction. J Am Acad Orthop Surg. 2016; 24(1): 28-36. doi: 10.5435/jaaos-d-14-00195
19. Шурыгина И.А., Шурыгин М.Г., Аюшинова Н.И., Каня О.В. Фибробласты и их роль в развитии соединительной ткани. Сибирский медицинский журнал. 2012; 110(3): 8-12.
20. Atala A, Irvine DJ, Moses M, Shaunak S. Wound healing versus regeneration: Role of the tissue environment in regenerative medicine. MRS Bull. 2010; 35(8): 10.1557/mrs2010.528. doi: 10.1557/mrs2010.528
21. MacLean S, Khan WS, Malik AA, Snow M, Anand S. Tendon regeneration and repair with stem cells. Stem Cells Int. 2012; 2012: 316281. doi: 10.1155/2012/316281
22. Дремина Н.Н., Трухан И.С., Шурыгина И.А. Клеточные технологии в травматологии: от клетки до клеточной инженерии. Acta biomedica scientifica. 2020; 5(6): 66-76. doi: 10.29413/ABS.2020-5.6.8
23. Costa-Almeida R, Calejo I, Gomes ME. Mesenchymal stem cells empowering tendon regenerative therapies. Int J Mol Sci. 2019; 20(12): 3002. doi: 10.3390/ijms20123002
24. Calve S, Dennis RG, Kosnik PE, Baar K, Grosh K, Arruda EM. Engineering of functional tendon. Tissue Eng. 2004; 10(5-6): 755- 761. doi: 10.1089/1076327041348464
25. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One. 2014; 9(4): 96113. doi: 10.1371/journal.pone.0096113
26. Docheva D, Hunziker EB, Fässler R, Brandau O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol. 2005; 25(2): 699-705. doi: 10.1128/MCB.25.2.699-705.2005
27. Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol. 2010; 30(20): 4797-4807. doi: 10.1128/MCB.00207-10
28. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011; 286(7): 5855-5867. doi: 10.1074/jbc.M110.153106
29. Mienaltowski MJ, Adams SM, Birk DE. Regional differences in stem cell/progenitor cell populations from the mouse achilles tendon. Tissue Eng Part A. 2013; 19(1-2): 199-210. doi: 10.1089/ten.TEA.2012.0182
30. Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006; 12(7): 1843-1849. doi: 10.1089/ten.2006.12.1843
31. Lavrentieva A, Majore I, Kasper C, Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal. 2010; 8: 18. doi: 10.1186/1478- 811X-8-18
32. Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: A review. Curr Rev Musculoskelet Med. 2008; 1(3-4): 165-174. doi: 10.1007/s12178-008-9032-5
33. Шурыгин М.Г., Шурыгина И.А., Дремина Н.Н. Влияние фактора роста эндотелия сосудов на уровень коллагенообразования в процессе развития постинфарктного кардиосклероза. Сибирский медицинский журнал (Иркутск). 2008; 78(3): 53-55.
34. Дремина Н.Н., Шурыгина И.А., Лушникова Е.Л., Непомнящих Л.М. Влияние эндотелиального фактора роста на постинфарктное моделирование миокарда крыс. Бюллетень экспериментальной биологии и медицины. 2009; 148(9): 330-336.
35. Caliari SR, Harley BAC. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A. 2013; 19(9-10): 1100- 1112. doi: 10.1089/ten.TEA.2012.0497
36. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development. 2009; 136(8): 1351-1361. doi: 10.1242/dev.027342
37. Oh JH, Chung SW, Kim SH, Chung JY, Kim JY.Neer Award: Effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg. 2014; 23(4): 445-455. doi: 10.1016/j.jse.2013.07.054
38. Al-Ani MK, Xu K, Sun Y, Pan L, Xu Z, Yang L. Study of bone marrow mesenchymal and tendon-derived stem cells transplantation on the regenerating effect of Achilles tendon ruptures in rats. Stem Cells Int. 2015; 2015: 984146. doi: 10.1155/2015/984146
39. Ni M, Rui YF, Tan Q, Liu Y, Xu LL, Chan KM, et al. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials. 2013; 34(8): 2024-2037. doi: 10.1016/j.biomaterials.2012.11.046
40. Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. JAppl Toxicol. 2019; 39(12): 1610-1622. doi: 10.1002/jat.3815
41. Diaz-Rodriguez P, Erndt-Marino J, Chen H, Diaz-Quiroz JF, Samavedi S, Hahn MS. A bioengineered in vitro osteoarthritis model with tunable inflammatory environments indicates context-dependent therapeutic potential of human mesenchymal stem cells. Regenerative Engineering and Translational Medicine. 2019; 5: 297-307.
42. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013; 19(6): 485-502. doi: 10.1089/ten.TEB.2012.0437
43. Волкова И.М., Коровина Д.Г. Трёхмерные матриксы природного и синтетического происхождения для клеточной биотехнологии. Биотехнология. 2015; 31(2): 8-26.
44. Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016; 51(1): 8-12. doi: 10.1016/j.jpedsurg.2015.10.022
45. Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018; 5(2): 115-124. doi: 10.1093/rb/rby001
46. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl JMed. 2001; 344(5): 385-386. doi: 10.1056/NEJM200102013440516
47. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R. Stem cells associated with macroporous bioceramics forlong bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007; 13(5): 947-955. doi: 10.1089/ten.2006.0271
48. Zhang C, Zhang E, Yang L, Tu W, Lin J, Yuan C, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/ progenitor cells promotes tendon repair. Biomaterials. 2018; 172: 66-82. doi: 10.1016/j.biomaterials.2018.03.043
49. Rinoldi C, Fallahi A, Yazdi IK, Paras JC, Kijeńska-Gawrońska E, Santiago GT, et al. Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering. ACS Biomater Sci Eng. 2019; 5(6): 2953-2964. doi: 10.1021/acsbiomaterials.8b01647
50. Xing F, Xiang Z, Rommens PM, Ritz U. 3D bioprinting for vascularized tissue-engineered bone fabrication. Materials (Basel). 2020; 13(10): 2278. doi: 10.3390/ma13102278
51. Zhang YS, Oklu R, Dokmeci MR, Khademhosseini A. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harb Perspect Med. 2018; 8(2): 025718. doi: 10.1101/cshperspect.a025718
52. Tarafder S, Brito JA, Minhas S, Effiong L, Thomopoulos S, Lee CH. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication. 2019; 12(1): 015008. doi: 10.1088/1758-5090/ab48ca
53. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J Mater Sci Mater Med. 2019; 30(3): 32. doi: 10.1007/s10856-019-6234-x
54. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: Approaches, applications and future prospects. J Transl Med. 2016; 14: 271. doi: 10.1186/s12967-016-1028-0
55. Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng. 2012; 109(12): 3152-3160. doi: 10.1002/bit.24591
56. Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng. 2014; 7(3): 460-472. doi: 10.1007/s12195-014-0340-0
57. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication. 2010; 2(1): 014101. doi: 10.1088/1758-5082/2/1/014101
58. Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med. 2014; 3(2): 241-254. doi: 10.5966/sctm.2013-0079
59. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009; 30(30): 5910-5917. doi: 10.1016/j.biomaterials.2009.06.034
60. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020; 226: 119536. doi: 10.1016/j.biomaterials.2019.119536
61. Snedeker JG, Foolen J. Tendon injury and repair – A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater. 2017; 63: 18-36. doi: 10.1016/j.actbio.2017.08.032
62. Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and ligament healing and current approaches to tendon and ligament regeneration. J Orthop Res. 2020; 38(1): 7-12. doi: 10.1002/jor.24475
63. Lui PP. Identity of tendon stem cells – how much do we know? J Cell Mol Med. 2013; 17(1): 55-64. doi: 10.1111/jcmm.12007
64. Qu SW, Xue YN, Li P, Zhou JD. Advances in the research of stem cell tissue-engineering. Zhonghua Shao Shang Za Zhi. 2020; 36(6): 510-515. doi: 10.3760/cma.j.cn501120-20190225-00039
Рецензия
Для цитирования:
Дремина Н.Н., Трухан И.С., Шурыгина И.А. Клеточные технологии в регенерации сухожилий: от клетки до тканевой инженерии. Acta Biomedica Scientifica. 2021;6(2):166-175. https://doi.org/10.29413/ABS.2021-6.2.19
For citation:
Dremina N.N., Trukhan I.S., Shurygina I.A. Cellular Technologies in Traumatology: From Cells to Tissue Engineering. Acta Biomedica Scientifica. 2021;6(2):166-175. (In Russ.) https://doi.org/10.29413/ABS.2021-6.2.19