Preview

Acta Biomedica Scientifica

Advanced search

RESPONSE OF BIOLOGICAL SYSTEMS TO GEOMAGNETIC STORMS

https://doi.org/10.29413/ABS.2018-3.5.18

Abstract

At present, influence of weak magnetic fields associated with solar and geomagnetic activity on biological systems is gaining more interest. Taking into account the accumulated data on the influence of geomagnetic storms on different biological levels, it is obvious that the mechanism of influence is universal. One of the approaches in this search may be the study of patterns and differences in the response to geomagnetic storms of various biological objects. As a research material served: data on the number of ambulance calls in the city of Irkutsk for acute myocardial infarction, cerebral infarction; results of retrospective analysis of the number of spontaneous parturition of the city of Irkutsk; data on the motion activity of fruit fly Drosophyla melanogaster, obtained by automated monitoring. The investigated indicators were compared with the parameters of geomagnetic activity at different time scales. As indicators of geomagnetic storms, three-hour (ap) and daily (Ap) equal to the average amplitude of variation of the geomagnetic field of the Earth. In the case of comparing the motion activity of fruit flies with magnetic storms, the local companions of the Earth’s magnetic field were additionally considered according to the data of the Irkutsk magnetic observatory. As a result of the conducted studies it was established that the detected response of biological systems depends on the characteristics of the state of the Earth’s magnetic field, which falls on the period of passage of magnetic storms. The obtained data also indicate possible gender differences in the response to the effects of the geomagnetic factor by organisms of different levels.

About the Authors

A. A. Bazhenov
Irkutsk State University; OOO Aksium.
Russian Federation

ul. Nizhnyaya Naberezhnaya 6, Irkutsk 664011.

ul. Lermontova 289, Irkutsk 664033.

Teaching Assistant at the Department of Natural Sciences Disciplines of the Pedagogical Institute; Deputy Director on General Issues.



M. V. Prikop
Irkutsk State University; OOO Aksium.
Russian Federation

ul. Nizhnyaya Naberezhnaya 6, Irkutsk 664011.

ul. Lermontova 289, Irkutsk 664033.

Teaching Assistant at the Department of Natural Sciences Disciplines of the Pedagogical Institute; Deputy Director on Development Issues.



A. S. Averina
Irkutsk State University.
Russian Federation

ul. Nizhnyaya Naberezhnaya 6, Irkutsk 664011.

Postgraduate at the Department of Natural Sciences Disciplines of the Pedagogical Institute.



V. V. Sukhovskaya
Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education.
Russian Federation

Yubileyniy 100, Irkutsk 664049.

of Medical Sciences, Associate Professor at the Department of Perinatal and Reproductive Medicine.



A. V. Ukhova
OOO Aksium.
Russian Federation

ul. Lermontova 289, Irkutsk 664033.

Graduate Student at the Department of Natural Science Disciplines of the Pedagogical Institute.



References

1. Bazhenov AA, Averina AS, Prikop MV. (2014). Influence of heliogeophysical factors on human health [Vliyanie geliogeofizicheskikh faktorov na zdorov’e cheloveka]. Acta biomedica scientifica, (6), 125-129.

2. Varakin YuYa, Ionova VG, Gornostaeva GV, Sazanova EA. (2011). Impact of heliogeophysical disturbances on haemorheological parameters in healthy people [Vliyanie geliogeofizicheskikh vozmushcheniy na gemoreologicheskie parametry u zdorovykh lyudey]. Zemskiy vrach, (2), 21-24.

3. Vladimirsky BM, Temur’yants NL. (2000). Influence of solar activity on the biosphere – noosphere [Vliyanie solnechnoy aktivnosti na biosferu – noosferu]. Geliobiologiya ot A.L. Chizhevskogo do nashikh dney, 374.

4. Garganeeva AA, Okrugin SA, Zyablov YuI, Parshin DA. (2012). Acute myocardial infarction: gender specifics of development and clinical course in an urban Western Siberian [Ostryy infarkt miokarda: gendernye osobennosti vozniknoveniya i techeniya v populyatsii sredne urbanizirovannogo goroda Zapadnoy Sibiri]. Kardiovaskulyarnaya terapiya i profilaktika, (11), 12-15.

5. Kravchenko KL, Bazhenov AA, Voronov VA, Prikop MV. (2013). Drosophila melanogaster laboratory population motion activity analysis and its connection which the space weather parameters [Analiz dvigatel’noy aktivnosti laboratornoy populyatsii Drosophila Melanogaster i ee svyaz s parametrami komicheskoy pogody]. Kosmos i biosfera: Tezisy dokladov X Mezhdunarodnoy krymskoy konferentsii, 88-89.

6. Kurochkina ON, Spasskiy AA, Khokhlov AL. (2012). The course of myocardial infarction from the position of gender differences: the results of a retrospective study [Techenie infarkta miokarda s pozitsii gendernykh razlichiy: rezul’taty retrospektivnogo issledovaniya]. Problemy zhenskogo zdorov’ja, (3), 18-23.

7. Moiseeva NI. (1992). Cosmophysical fluctuations and development of the human embryo [Kosmofizicheskie fluktuatsii i razvitie chelovecheskogo embriona]. Biofizika, 37 (4), 700-704.

8. Pliss MG, Kuzmenko NV, Cyrlin VA. (2017). The influence of geographical latitude on the number of hospitalizations for cardiovascular disease in years with low and high geomagnetic activity [Vliyanie geograficheskoy shiroty na kolichestvo gospitalizatsiy po povodu serdechnososudistykh zabolevaniy v gody s nizkoy i vysokoy geomagnitnoy aktivnost’yu]. Translyatsionnaya meditsina, 4 (6), 13-21.

9. Popova EA, Andronova SV, Popov AI. (2014). Change in physiological parameters of the inhabitants of the Far North under the influence of astronomical perturbations [Izmenenie fiziologicheskikh pokazateley zhiteley kraynego severa pod vliyaniem astronomicheskikh vozmushcheniy]. Vestnik Chelyabinskogo gosudarstvennogo universiteta, (13), 342.

10. Prikop MV, Bazhenov AA. (2017). Fluctuation of level of motion activity of laboratory groups Drosophila melanogaster and geomagnetic storms [Vspleski dvigatel’noy aktivnosti laboratornykh grupp osobey Drosophila melanogaster i geomagnitnye vozmushcheniya]. Biologiya 21 vek: Materialy 21-y Mezhdunarodnoy Pushchinskoy shkoly-konferentsii molodykh uchenykh, 71.

11. Stepanova TYu, Nikolaeva AV, Kurmaev DP. (2015). Influence of geomagnetic disturbances on aggregation function of platelets in elderly and old people with CHD [Vliyanie geomagnitnykh vozmushcheniy na agregatsionnuyu funktsiyu trombotsitov u lits pozhilogo i starcheskogo vozrasta, stradayushchikh IBS]. Klinicheskie i fundamental’nye aspekty gerontologii, 330-335.

12. Shadrina LP, Samsonov SN, Manykina VI. (2017). The differences in cardiogram changes in the inhabitants of arctic and mid-latitude zones during geomagnetic storms [Razlichiya v izmeneniyakh kardiogramm zhiteley arkticheskoy i sredneshirotnoy zon vo vremya geomagnitnykh bur’]. MEDICUS, 4 (16), 24-27.

13. Shumilov OI, Kasatkina EA, Enikeev AV, Khramov AA. (2003). Investigation of the effect of geomagnetic disturbances in high latitudes on the intrauterine state of the fetus using the method of cardiotocography [Issledovanie vozdeystviya geomagnitnykh vozmushcheniy v vysokikh shirotakh na vnutriutrobnoe sostoyanie ploda metodom kardiotokografii]. Biofizika, 48 (2), 374-379.

14. Azcarate T, Mendoza B, Levi JR. (2016). Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24. Adv Space Res, 58 (10), 2116-2125.

15. Breus TK, Binhi VN, Petrukovich AA. (2016). Magnetic factor of the solar terrestrial relations and its impact on the human body: physical problems and prospects for research. Physics-Uspekhi, (59), 502-510. DOI: 10.3367/ UFNe.2015.12.037693

16. Conn PM (ed.). (2008). Sourcebook of models for biomedical research. Totowa, NJ, 778 p.

17. Halberg F, Cornélissen G, Otsuka K, Watanabe Y, Katinas GS, Burioka N, Delyukov A, Gorgo Y, Zhao Z, Weydahl A, Sothern RB, Siegelova J, Fiser B, Dusek J, Syutkina EV, Perfetto F, Tarquini R, Singh RB, Rhees B, Lofstrom D, Lofstrom P, Johnson PW, Schwartzkopff O, the International BIOCOS Study Group. (2000). Cross-spectrally coherent ~10,5and 21-year biological and physical, magnetic storms and myocardial infarctions. Neuro Endocrinology Letters, 21 (3), 233-258.

18. Gegear R, Casselman A, Waddell S, Reppert S. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 454 (7207), 10141019. DOI: 10.1038/nature07183

19. Krylov VV. (2017). Biological effects related to geomagnetic activity and possible mechanisms. Bioelectromagnetics, (38), 497-510. DOI: 10.1002/ bem.22062

20. McCraty R, Atkinson M, Stolc V, Alabdulgoder A, Vainoras A, Ragulskis M. (2017). Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects. Int J Environ Res Public health, 14 (7), 770. DOI: 10.3390/ijerph14070770

21. Painter MS, Dommer DH, Altizer WW, Muheim R, Phillips JB. (2013). Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. J Exp Biol, 216 (97), 1307-1316. DOI: 10.1242/jeb.077404

22. Phillips JB, Sayeed O. (1992). Wavelength-dependent effects of light on magnetic compass in drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, (172), 303-308.

23. Ugur B, Chen K, Bellen HJ. (2016). Drosophila tools and assays for the study of human diseases. Disease Models & Mechanisms, (9), 235-244. DOI: 10.1242/ dmm.023762

24. Wangler MF, Yamamoto S, Bellen HJ. (2015). Fruit flies in biomedical research. Genetic, (199), 639-653. DOI: 10.1534/genetics.114.171785


Review

For citations:


Bazhenov A.A., Prikop M.V., Averina A.S., Sukhovskaya V.V., Ukhova A.V. RESPONSE OF BIOLOGICAL SYSTEMS TO GEOMAGNETIC STORMS. Acta Biomedica Scientifica. 2018;3(5):126-131. (In Russ.) https://doi.org/10.29413/ABS.2018-3.5.18

Views: 943


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)