Biochemical and morphological characteristics of umbilical vein endothelium in pregnancies complicated by cytomegalovirus infection
https://doi.org/10.29413/ABS.2025-10.6.3
Abstract
Background. Cytomegalovirus (CMV) infection triggers inflammation and endothelial damage in umbilical cord vessels, which is associated with impaired fetoplacental hemodynamics and adverse perinatal outcomes.
The aim. To identify biochemical and morphological characteristics of the umbilical vein endothelium in CMV infection.
Methods. The study included 117 newborns from mothers with CMV reactivation during the third trimester of pregnancy (main group) and 45 newborns from CMV-negative mothers (control group). In umbilical cord blood, TNF-α, IL-1β, IL-6, endothelin-1, and polymorphonuclear leukocyte (PMN) elastase were measured by enzyme-linked immunosorbent assay (ELISA). Umbilical cord tissue was examined histologically.
Results. In the main group, umbilical cord blood showed signifiantly elevated levels of TNF-α (2.6-fold, p < 0.001), IL-1β (2.5-fold, p < 0.001), IL-6 (1.6-fold, p < 0.001), endothelin-1 (3.2-fold, p < 0.001), and PMN elastase (1.3-fold, p < 0.001). Histological analysis revealed signs of inflammation and remodeling of the venous wall. A 1.14fold decrease in nuclear optical density of Wharton’s jelly cells (p < 0.05), a 1.2-fold reduction in the proportion (p < 0.001) and a 1.23-fold reduction in the thickness of amniotic epithelium (p < 0.001), and a 1.12-fold decrease in the proportion of intact Wharton’s jelly (p < 0.05) were observed, alongside a 1.1-fold increase in altered Wharton’s jelly (p < 0.05). Additionally, the proportion of the venous muscular layer and endothelium decreased by 1.23-fold (p < 0.001) and 1.24-fold (p < 0.001), respectively, and venous lumen narrowing by 1.1-fold (p < 0.05) was noted. Signifiant correlations were found between TNF-α, IL-1β, and IL-6 levels and the proportions of the muscular layer, endothelial layer, and venous lumen.
Conclusion. CMV reactivation during the third trimester of pregnancy is characterized by elevated levels of inflammatory, vasoconstrictive, and destructive factors in umbilical vein blood, which exert damaging effects on vascular endothelium.
About the Authors
I. A. AndrievskayaRussian Federation
Irina A. Andrievskaya – Dr. Sc. (Biol.), head of the laboratory of mechanisms of etiopathogenesis and recovery processes of the respiratory system in chronic respiratory diseases
Kalinina str. 22, Blagoveshchensk 675000
N. N. Dorofienko
Russian Federation
Nikolay N. Dorofienko – Cand. Sc. (Med.), senior research officer of the laboratory of mechanisms of etiopathogenesis and recovery processes of the respiratory system in chronic respiratory diseases
Kalinina str. 22, Blagoveshchensk 675000
T. S. Churikova
Russian Federation
Tatyana S. Churikova – junior researcher of the laboratory of mechanisms of etiopathogenesis and recovery processes of the respiratory system in nonspecific lung diseases
Kalinina str. 22, Blagoveshchensk 675000
References
1. Shakhgildyan VI. Congenital cytomegalovirus infection: current issues and possible answers. Neonatology: news, opinions, training. 2020; 8(4): 61-72. (In Russ.). doi: 10.33029/2308-2402-2020-8-4-61-72
2. Mimura N, Nagamatsu T, Morita K, Taguchi A, Toya T, Kumasawa K, et al. Suppression of human trophoblast syncytialization by human cytomegalovirus infection. Placenta. 2022; 117: 200-208. doi: 10.1016/j.placenta.2021.12.011
3. Shestak EV. Primary and acquired cytomegalovirus infection in newborns. Infectious Diseases: news, opinions, training. 2024; 13(1): 35-41. (In Russ.). doi: 10.33029/23053496-2024-13-1-35-41
4. Chatzakis C, Ville Y, Makrydimas G, Dinas K, Zavlanos A, Sotiriadis A. Timing of primary maternal cytomegalovirus infection and rates of vertical transmission and fetal consequences. Am J Obstet Gynecol. 2020; 223(6): 870-883. e11. doi: 10.1016/j.ajog.2020.05.038
5. Andouard D, Tilloy V, Ribot E, Mayeras M, Diaz-Gonzalez D, El Hamel C, et al. Genetic and functional characterization of congenital HCMV clinical strains in ex vivo first trimester placental model. Pathogens. 2023; 12(8): 985. doi: 10.3390/pathogens12080985
6. Uenaka M, Morizane M, Tanimura K, Deguchi M, Kanzawa M, Itoh T, et al. Histopathological analysis of placentas with congenital cytomegalovirus infection. Placenta. 2019; 75: 62-67. doi: 10.1016/j.placenta.2019.01.003
7. Plotogea M, Isam AJ, Frincu F, Zgura A, Bacinschi X, Sandru F, et al. An overview of cytomegalovirus infection in pregnancy. Diagnostics (Basel). 2022; 12(10): 2429. doi: 10.3390/diagnostics12102429
8. Karpova AL, Narogan MV, Karpov NYu. Congenital cytomegalovirus infection: diagnosis, treatment and prevention. Russian Bulletin of Perinatology and Pediatrics. 2017; 62(1): 10-18. (In Russ.). doi: 10.21508/1027-4065-2017-62-1-10-18
9. Pena-Burgos EM, Regojo-Zapata RM, Caballero-Ferrero Á, Martínez-Payo C, Viñuela-Benéitez MDC, Montero D, et al. The spectrum of placental findings of first-trimester cytomegalovirus infection related to the presence of symptoms in the newborns and stillbirths. Mod Pathol. 2025; 38(9): 100808. doi: 10.1016/j.modpat.2025.100808
10. Wintringham JA, Conran RM. Educational case: infections during pregnancy: congenital cytomegalovirus infection. Acad Pathol. 2022; 9(1): 100020. doi: 10.1016/j.acpath.2022.100020
11. Pereira L, Petitt M, Fong A, Tsuge M, Tabata T, Fang-Hoover J, et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J Infect Dis. 2014; 209(10): 1573-1584. doi: 10.1093/infdis/jiu019
12. Dorofienko NN, Andrievskaya IA, Ishutina NA. Proinflammatory cytokines and the state of umbilical vessel endothelium in cytomegalovirus infection. Siberian Medical Journal (Irkutsk). 2015; 132(1): 58-61. (In Russ.).
13. Gombos RB, Wolan V, McDonald K, Hemmings DG. Impaired vascular function in mice with an active cytomegalovirus infection. Am J Physiol Heart Circ Physiol. 2009; 296(4): H937-H945. doi: 10.1152/ajpheart.01027.2008
14. Gorikov IN. Fetal inflammatory response and endothelial dysfunction in newborns of mothers with exacerbation of cytomegalovirus infection in the second trimester of pregnancy. Bulletin of Physiology and Pathology of Respiration. 2022; (83): 53-58. (In Russ.). doi: 10.36604/1998-5029-2022-83-53-58
15. Planchon MS, Fishman JA, El Khoury J. Modulation of monocyte effector functions and gene expression by human cytomegalovirus infection. Viruses. 2024; 16(12): 1809. doi: 10.3390/v16121809
16. Pryzdial ELG, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost. 2024; 22(12): 3366-3382. doi: 10.1016/j.jtha.2024.08.014
17. Lindholm K, O’Keefe M. Placental cytomegalovirus infection. Arch Pathol Lab Med. 2019; 143(5): 639-642. doi: 10.5858/arpa.2017-0421-RS
18. Lutsenko MT. Microscopic and histological techniques. Blagoveshchensk; 1976. (In Russ.).
19. Lilly R. Pathological technique and practical histochemistry. Translated from English. Moscow: Mir; 1969. (In Russ.).
20. Jeffery HC, Söderberg-Naucler C, Butler LM. Human cytomegalovirus induces a biphasic inflammatory response in primary endothelial cells. J Virol. 2013; 87(11): 6530-6535. doi: 10.1128/JVI.00265-13
21. Dorofienko NN. Proinflammatory cytokines and the state of umbilical vessel endothelium in cytomegalovirus infection. Siberian Medical Journal (Irkutsk). 2015; 132(1): 58-61. (In Russ.). doi: 10.36604/1998-5029-2019-74-92-97
22. Sato I, Kaji K, Murota S. Age related decline in cytokine induced nitric oxide synthase activation and apoptosis in cultured endothelial cells: minimal involvement of nitric oxide in the apoptosis. Mech Ageing Dev. 1995; 81(1): 27-36. doi: 10.1016/0047-6374(94)01579-b
23. Stefanov G, Briyal S, Pais G, Puppala B, Gulati A. Relationship between oxidative stress markers and endothelin-1 levels in newborns of different gestational ages. Front Pediatr. 2020; 8: 279. doi: 10.3389/fped.2020.00279
24. Bashmakova NV, Tsyvyan PB, Chistyakova GN, Dankova IV, Trapeznikova YuM, Chukanova AN. The role of endothelial dysfunction in the development of fetal growth restriction. Russian Bulletin of Obstetrician-Gynecologist. 2017; 17(3): 21-26. (In Russ.). doi: 10.17116/rosakush201717321-26
25. Rainger GE, Rowley AF, Nash GB. Adhesion-dependent release of elastase from human neutrophils in a novel, flow-based model: specificity of different chemotactic agents. Blood. 1998; 92(12): 4819-4827.
26. Yarovaya GA. Properties and clinical-diagnostic significance of determining elastase from the pancreatic gland and polymorphonuclear leukocytes. Laboratory Medicine. 2006; (8): 3-10. (In Russ.).
27. Serebrennikova SN, Seminsky IZh, Guzovskaia EV, Gutsol LO. Inflammation – a fundamental pathological process: lecture 2 (cellular component). Baikal Medical Journal. 2023; 2(2): 65-76. (In Russ.). doi: 10.57256/2949-07152023-2-65-76
28. ЕErmakova LB, Lysenko SN, Chechneva MA, Petrukhin VA, Burumkulova FF. Umbilical artery hemodynamic features in diabetic and healthy pregnant women. Russian Bulletin of Obstetrician-Gynecologist. 2016;16(4):54-60. (In Russ.). doi: 10.17116/rosakush201616454-60
29. Garcia AG, Fonseca EF, Marques RL, Lobato YY. Placental morphology in cytomegalovirus infection. Placenta. 1989; 10(1): 1-18.
Review
For citations:
Andrievskaya I.A., Dorofienko N.N., Churikova T.S. Biochemical and morphological characteristics of umbilical vein endothelium in pregnancies complicated by cytomegalovirus infection. Acta Biomedica Scientifica. 2025;10(6):20-27. (In Russ.) https://doi.org/10.29413/ABS.2025-10.6.3
JATS XML

.png)































