Preview

Acta Biomedica Scientifica

Advanced search

Integral Assessment of the Epidemiological Risk of Genetic Lineages of Mycobacterium tuberculosis within the Genomic Epidemiological Surveillance System

https://doi.org/10.29413/ABS.2025-10.4.24

Abstract

Introduction. The spread of drug-resistant tuberculosis necessitates the implementation of novel analytical approaches for assessing epidemiological risks using wholegenome sequencing (WGS) data.

Objective. To develop an Integrated Epidemiological Risk Index (IERI) that accounts for regional patterns of strain distribution as well as biological and genetic characteristics of Mycobacterium tuberculosis (MTB) associated with the development of drug resistance.

Materials and Methods. The study included 5538 MTB genomes representing a wide range of genotypes from countries of the post-Soviet region. For each strain; the mutational burden in resistance-associated genes and the relative frequency of the genotype in the population were calculated. Logarithmic transformation; normalization; and aggregation methods were applied to construct a unified Integrated Epidemiological Risk Index (IERI). The predictive value of the index was evaluated using ROC analysis.

Results. This study presents an Integrated Epidemiological Risk Index (IERI) that simultaneously incorporates the population prevalence of MTB genotypes and their mutational burden in genes associated with resistance to anti-tuberculosis drugs. ROC analysis confirmed the high predictive value of the IERI (AUC = 0.867) and the robustness of the method when applied to heterogeneous population datasets.

Conclusion. The findings demonstrate the practical utility of the IERI for early identification of high-risk strains in the context of genomic epidemiological surveillance.

About the Authors

V. V. Sinkov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Viacheslav V. Sinkov – Cand. Sc. (Med.); Senior Researcher at the Laboratory of epidemiologically and socially significant infections; Institute of Epidemiology and Microbiology

Timiriazeva str.; 16; Irkutsk



O. B. Ogarkov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Svetlana N. Zhdanova – Dr. Sc. (Med.); Leading Researcher at the Laboratory of epidemiologically and socially significant infections; Institute of Epidemiology and Microbiology

Timiriazeva str.; 16; Irkutsk



S. N. Zhdanova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Oleg B. Ogarkov – Dr. Sc. (Med.); Director of the Institute of epidemiology and microbiology; Institute of Epidemiology and Microbiology

Timiriazeva str.; 16; Irkutsk



E. D. Savilov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Evgeny D. Savilov – Dr. Sc. (Med.); Chief Researcher at the Laboratory of epidemiologically and socially significant infections; Institute of Epidemiology and Microbiology

Timiriazeva str.; 16; Irkutsk



References

1. Global tuberculosis report. Geneva: World Health Organization; 2023.

2. Aleksandrova GA, et al. Healthcare in Russia. Moscow: Rosstat; 2023. (In Russ.).

3. Carter L, Yu MA, Sacks JA, Barnadas C, Pereyaslov D, Cognat S, Briand S, et al. Global genomic surveillance strategy for pathogens with pandemic and epidemic potential 2022–2032. Bull World Health Organ. 2022; 100(4): 239- 239A. doi: 10.2471/BLT.22.288220

4. Rambaut A, Holmes EC, O’Toole Á, Hill V, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020; 5(11): 1403-1407. doi: 10.1038/s41564-020-0770-5

5. Akimkin VG, et al. Strategy of genomic epidemiological surveillance: Problems and prospects. Journal of Microbiology, Epidemiology and Immunobiology. 2024; 101(2): 163-172. (In Russ.). doi: 10.36233/0372-9311-435

6. Andrés M, et al. Molecular and genomic typing for tuberculosis surveillance: A survey study in 26 European countries. PLOS ONE. 2019; 14(3): e0210080. doi: 10.1371/journal.pone.0210080

7. Struelens MJ, Brisse S. From molecular to genomic epidemiology: Transforming surveillance and control of infectious diseases. Euro Surveill. 2013; 18(4): 20386. doi: 10.2807/ese.18.04.20386-en

8. Ogarkov OB, Savilov ED, Zhdanova SN. Epidemiological surveillance of tuberculosis: From molecular methods to genomic studies. Epidemiology and Vaccinal Prevention. 2023; 22(6): 155-161. (In Russ.). doi: 10.31631/2073-3046-2023-22-6-155-161

9. Kotov IA, et al. Genomic surveillance of SARS-CoV-2 in the Russian Federation: Capabilities of the VGARus platform. Journal of Microbiology, Epidemiology and Immunobiology. 2024; 101(4): 435-447. (In Russ.). doi: 10.36233/0372-9311-469

10. Simonova EG, Sergevnin VI. Pre-epidemic diagnostics in the system of risk-oriented epidemiological surveillance of infectious diseases. Epidemiology and Vaccinal Prevention. 2018; 17(5): 31-37. (In Russ.). doi: 10.31631/2073-3046-2018-17-5-31-37

11. Savilov ED, et al. Risk as a basic concept of epidemiology. Bulletin of the Russian Academy of Medical Sciences. 2019; 74(1): 54-60. (In Russ.). doi: 10.15690/vramn1027

12. Shugaeva SN, Savilov ED. Risk in epidemiology: Terminology, main definitions and systematization of concepts. Epidemiol Vaccine Prev. 2017; 16(6): 73-78. doi: 10.31631/2073-3046-2017-16-6-73-78

13. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17(1): 10-12. doi: 10.14806/ej.17.1.200

14. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010; 26(5): 589-595. doi: 10.1093/bioinformatics/btp698

15. Danecek P, Bonfield JK, Liddle J, Marshall J, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021; 10(2): giab008. doi: 10.1093/gigascience/giab008

16. Shitikov E, Bespiatykh D. A revised SNP-based barcoding scheme for typing Mycobacterium tuberculosis complex isolates. mSphere. 2023; 8(4): e00169-23. doi: 10.1128/msphere.00169-23

17. Walker TM, et al. The 2021 WHO catalogue of complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe. 2022; 3(4): e265-e273. doi: 10.1016/S2666-5247(21)00327-2

18. WHO. Consolidated guidelines on tuberculosis. Module 4, Treatment: Drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022. URL: https://www.who.int/publications/i/item/9789240063129 [date of access: August 1, 2025].

19. Hlanze H, Mutshembele A, Reva ON. Universal lineage-independent markers of multidrug resistance in Mycobacterium tuberculosis. Microorganisms. 2024; 12(7): 1340. doi: 10.3390/microorganisms12071340

20. Mokrousov I, Vyazovaya A, Narvskaya O. Mycobacterium tuberculosis Latin American-Mediterranean family and its sublineages in the light of robust evolutionary markers. J Bacteriol. 2014; 196(10): 1833-1841. doi: 10.1128/JB.01485-13

21. Sinkov V, et al. New epidemic cluster of pre-extensively drug-resistant isolates of Mycobacterium tuberculosis Ural family emerging in Eastern Europe. BMC Genomics. 2018; 19(1): 762. doi: 10.1186/s12864-018-5133-3


Review

For citations:


Sinkov V.V., Ogarkov O.B., Zhdanova S.N., Savilov E.D. Integral Assessment of the Epidemiological Risk of Genetic Lineages of Mycobacterium tuberculosis within the Genomic Epidemiological Surveillance System. Acta Biomedica Scientifica. 2025;10(4):244-254. (In Russ.) https://doi.org/10.29413/ABS.2025-10.4.24

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)