State of the parietietal-luminal microbiota of the distal colon of Wistar rats during experimental acute cerebral ischemia
https://doi.org/10.29413/ABS.2025-10.4.12
Abstract
The “microbiota-gut-brain” axis plays a significant role in the pathogenesis of ischemic stroke. However; changes in the composition of the intestinal microbiota in the acute period of ischemic stroke remain insufficiently studied; which determines the need for experimental research.
The aim. To study the changes in the composition of the parietal-luminal microbiota of the distal colon of Wistar rats in experimental acute cerebral ischemia.
Materials and methods. The study was performed on 20 sexually mature male Wistar rats; divided into 2 groups: group I (n = 10) – intact animals; group II (n = 10) – animals with experimental acute cerebral ischemia (EACI); modeled by the method of Chen S.T. Composition of the parietal luminal microbiota of the distal colon. The intestines of the animals were evaluated on day 3 by real-time polymerase chain reaction. The total bacterial mass (GE/ml); the frequency of detection of microorganisms (n (%)); and the quantitative structure of the parietal-luminal microbiota (lg GE/ml) were determined.
Results. On the 3 day from the start of the experiment; the total bacterial mass in animals of the EACI group (10 GE/ml) did not differ from the same indicator in animals of the intact group (p = 1.000). The dominant microorganisms in both groups were Lacticaseibacillus spp.; Bifidobacterium spp.; Escherichia coli; Bacteroides spp.; while the spectrum of the accompanying parietal-luminal microbiota was different. Thus; Enterobacter spp. was not detected in animals with EACI and Klebsiella pneumoniae; but Clostridioides difficile and Fusobacterium nucleatum were recorded; in contrast to similar indicators of the group of intact animals. Faecalibacterium prausnitzii and Staphylococcus aureus were found in both groups.
Conclusions. On day 3; EACI in Wistar rats was accompanied by selective restructuring of the parietal luminal microbiota of the distal colon; associated with the appearance of C. difficile; F. nucleatum and the disappearance of Enterobacter spp.; K. pneumoniae; which may indicate an imbalance of the autochthonous microbiota; while maintaining the total bacterial mass and dominant symbiotic populations (Lacticaseibacillus spp.; Bifidobacterium spp.; E. coli; Bacteroides spp.) reflects the stability of the basic microbial profile in cerebral ischemia.
About the Authors
Y. S. ShishkovaRussian Federation
Yulia S. Shishkova – Dr. Sc. (Med.); Professor; Professor of the Department of microbiology; virology and immunology
Vorovskogo St.; 64; Chelyabinsk 454092
M. V. Osikov
Russian Federation
Mikhail V. Osikov – Dr. Sc. (Med.); Professor; Head of the Department of pathophysiology
Vorovskogo St.; 64; Chelyabinsk 454092
A. V. Shelomentsev
Russian Federation
Aleksey V. Shelomentsev – Postgraduate student of the Department of pathophysiology
Vorovskogo St.; 64; Chelyabinsk 454092
M. S. Boyko
Russian Federation
Margarita S. Boyko – Cand. Sc. (Med.); Associate professor of the Department of pathophysiology
Vorovskogo St.; 64; Chelyabinsk 454092
M. A. Zotova
Russian Federation
Maria A. Zotova – Cand. Sc. (Biol.); Leading researcher at the central research laboratory
Vorovskogo St.; 64; Chelyabinsk 454092
References
1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022; 17(1): 18-29. doi: 10.1177/17474930211065917. Erratum in: Int J Stroke. 2022; 17(4): 478.
2. Ignatieva VI, et al. Socio-economic burden of stroke in the Russian Federation. Journal of Neurology and Psychiatry. SS Korsakov. Special issues. 2023; (8-2): 5-15. (In Russ.).
3. Qin C, Sheng Ya, Yun-Hui Ch, Hang Zh, Xiao-Wei P, Lian Ch, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal transduction and targeted therapy. 2022; 7(1): 215. doi: 10.1038/s41392-022-01064-1
4. An H, Zhou B, Ji X. Mitochondrial quality control in acute ischemic stroke. J Cereb Blood Flow Metab. 2021; 41(12): 3157-3170. doi: 10.1177/0271678X211046992
5. Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon. 2023; 9(7): e17986. doi: 10.1016/j.heliyon.2023.e17986
6. Bonnechère B, Amin N, van Duijn C. What are the key gut microbiota involved in neurological diseases? A Systematic Review. Int J Mol Sci. 2022; 23(22): 13665. doi: 10.3390/ijms232213665
7. Honarpisheh P, Bryan RM, McCullough LD. Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome. Circ Res. 2022; 130(8): 1112-1144. doi: 10.1161/CIRCRESAHA.122.319983
8. Sun H, Gu M, Li Z, Chen X, Zhou J. Gut microbiota dysbiosis in acute ischemic stroke associated with 3-month unfavorable outcome. Front Neurol. 2021; 12: 799222. doi: 10.3389/fneur.2021.799222
9. Long J, Wang J, Li Y, Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Front Nutr. 2022; 9: 1008514. doi: 10.3389/fnut.2022.1008514
10. Chen ST, Hsu CY, Hogan EL, et al. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 1986; 17(4): 738-743. doi: 10.1161/01.str.17.4.738
11. Kim AD, et al. Features of topographic anatomy and wall microflora of the distal colon in Wistar rats. Acta Biomedica Scientifica. 2016; 1(2): 48-54. (In Russ.). doi: 10.12737/20615
12. Karasyova IV, et al. Study of gut microbiome in rats in response to dietary copper and zinc nanoparticles introduction. Experimental Biology. 2023; 45(3): 112-118. (In Russ.).
13. Makarova MN, et al. Characteristics of gut microbiota in humans and laboratory animals. Bull Russ Acad Med Sci. 2022; 77(5): 34-42. (In Russ.).
14. Hu W, Kong XYi, Wang H, LI YuQ, Luo YiM. Ischemic stroke and intestinal flora: an insight into brain–gut axis. European journal of medical research. 2022; 27(1): 73. doi: 10.1186/s40001-022-00691-2
15. Lee J, d’AigleJ, Atadja L, QuaicoeV, HonarpishehP, et al. Gut microbiota–derived short-chain fatty acids promote poststroke recovery in aged mice. Circulation research. 2020; 127(4): 453-465. doi: 10.1161/CIRCRESAHA.119.316448
16. Leslie JL, et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and immunity. 2015; 83(1): 138-145. doi: 10.1128/IAI.02561-14
17. Long J, Wang JL, Li Ya, Chen Sh. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Frontiers in Nutrition. 2022; 9: 1008514. doi: 10.3389/fnut.2022.1008514
18. Grondin JA, Kwon YuH, Mehraban Far P, Haq S, Khan WI. Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Frontiers in immunology. 2020; 11: 2054. doi: 10.3389/fimmu.2020.02054
19. Huh J-W, Roh T-Y. Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC microbiology. 2020; 20: 1-17. doi: 10.1186/s12866-020-01887-4
20. Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Research. 2021; 10: 242. doi: 10.12688/f1000research.51752.2
21. Tan C, et al. Dysbiosis of gut microbiota and short chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. Journal of parenteral and enteral nutrition. 2021; 45(3): 518-529. doi: 10.1002/jpen.1861
Review
For citations:
Shishkova Y.S., Osikov M.V., Shelomentsev A.V., Boyko M.S., Zotova M.A. State of the parietietal-luminal microbiota of the distal colon of Wistar rats during experimental acute cerebral ischemia. Acta Biomedica Scientifica. 2025;10(4):121-128. (In Russ.) https://doi.org/10.29413/ABS.2025-10.4.12