Lysyl oxidase in the pathology of the heart
https://doi.org/10.29413/ABS.2025-10.4.4
Abstract
Cardiovascular pathology is currently one of the main causes of disability and mortality of the able-bodied population. Fibrosis, an overgrowth of connective tissue, occupies one of the main places among the diseases of this pathology. The formation of fibrous tissue is determined by the excessive accumulation of extracellular matrix components and is an important phase of the reparative process. The lysyl oxidase and lysyl oxidase-like proteins enzyme play an important role in the remodeling of the extracellular matrix, controlling its formation by binding collagen or elastin fibers. It is known that in the heart, in addition to cardiomyocytes, fibroblasts represent the largest population of cells, among which the synthetically active are fibroblasts and myofibroblasts, which produce fibrous structures of the extracellular matrix, among which collagen in the heart is considered predominant. Of all the types of collagen, the most common are type I and type III collagens, which are responsible for the strength and elasticity of the matrix network.
Lysyl oxidase includes 5 representatives: the enzyme itself and 4 lysyl oxidase-like proteins. The enzyme and its proteins are copper-containing amino oxidases that catalyze the oxidation of lysine, forming strong cross-links between lysine fragments of fibrous structures of the extracellular matrix, regulating its homeostasis and remodeling. The functional state of the heart directly depends on the composition and structure of the extracellular matrix. Dynamic changes in protein expression occur in various cardiovascular pathologies; It is believed that these changes play a key role in the associated tissue fibrosis.
Therapeutic effects on enzymes of the lysyl oxidase family have shown promising results in animal models, but are at an early stage of development and require further study.
The PubMed and eLibrary databases for the period 1968–2024 were analyzed using the following keywords: lysyl oxidase, fibrosis, connective tissue, heart pathology.
About the Authors
N. N. DreminaRussian Federation
Natalya N. Dremina – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of cell technologies and regenerative medicine
Bortsov Revolitsii str., 1, Irkutsk 664003
I. S. Trukhan
Russian Federation
Irina S. Trukhan – Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of cell technologies and regenerative medicine
Bortsov Revolitsii str., 1, Irkutsk 664003
I. A. Shurygina
Russian Federation
Irina A. Shurygina – Dr. Sc. (Med.), Professor of the Russian Academy of Sciences, Deputy Director for research
Bortsov Revolitsii str., 1, Irkutsk 664003
M. G. Shurygin
Russian Federation
Mikhail G. Shurygin – Dr. Sc. (Med.), Head of the Scientific Laboratory Department
Bortsov Revolitsii str., 1, Irkutsk 664003
References
1. Shurygin МG, Shurygina IА, Dremina NN, Kanya ОV. Matrix metalloproteinase 9 and remodeling in myocardial infarction. Byulleten’ VSNC SO RAMN. 2013; 2(90-1):138-141. (In Russ.).
2. Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021; 117(6): 1450-1488. doi: 10.1093/cvr/cvaa324
3. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020; 587(7835): 555-566. doi: 10.1038/s41586-020-2938-9
4. Kania G, Blyszczuk P, Eriksson U. Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med. 2009; 19(8): 247-52. doi: 10.1016/j.tcm.2010.02.005
5. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018; 392(10159): 1736-1788. doi: 10.1016/S0140-6736(18)32203-7
6. Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol. 2019; 74(20): 2529-2532. doi: 10.1016/j.jacc.2019.10.009
7. Shurygina IА, Trukhan IS, Dremina NN, Shurygin MG. Mitogen-activated protein kinases as a target for regulating the connective tissue growth. Advances in health and disease. New York. 2023: 99-122.
8. Shurygin MG, Shurygina IА, Dremina NN, Kanya ОV. Postinfarction cardiosclerosis – from pathophysiology to regenerative medicine. Russian Academy of Sciences. Irkutsk, 2018: 288. (In Russ.).
9. Gillombardo CB, Hoit BD. Constrictive pericarditis in the new millennium. J Cardiol. 2024; 83(4): 219-227. doi: 10.1016/j.jjcc.2023.09.003
10. Shurygina IА, Shurygin MG, Ayushinova NI, Каnya ОV. Fibroblasts and their role in the development of connective tissue. Sibirskij medicinskij zhurnal. 2012; 3: 8-12. (In Russ.).
11. Tallquist MD. Cardiac Fibroblast Diversity. Annu Rev Physiol. 2020; 82: 63-78. doi: 10.1146/annurev-physiol-021119-034527
12. Shurygin MG, Shurygina IА, Dremina NN. The effect of vascular endothelial growth factor on the level of collagen formation during the development of postinfarction cardiosclerosis. Sibirskij medicinskij zhurnal. 2008; 3: 53-55. (In Russ.).
13. Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018; 68-69: 490-506. doi: 10.1016/j.matbio.2018.01.013
14. Rodríguez C, Martínez-González J. The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling. Cells. 2019; 8(12): 1483. doi: 10.3390/cells8121483
15. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, et al. The Collagen Suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019; 31(1): e1801651. doi: 10.1002/adma.201801651
16. López B, González A, Hermida N, Valencia F, Teresa E, Díez J. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol. 2010; 299(1): H1-9. doi: 10.1152/ajpheart.00335.2010
17. Pinnell SR, Martin GR. The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sci USA. 1968; 61: 708–716. doi: 10.1073/pnas.61.2.708
18. Al-U’datt D, Allen BG, Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res. 2019; 115(13): 1820-1837. doi: 10.1093/cvr/cvz176
19. Martínez-González J, Varona S, Cañes L, Galán M, Briones AM, Cachofeiro V, et al. Emerging Roles of Lysyl Oxidases in the Cardiovascular System: New Concepts and Therapeutic Challenges. Biomolecules. 2019; 9(10): 610. doi: 10.3390/biom9100610
20. Lopez KM, Greenaway FT. Identification of the copper-binding ligands of lysyl oxidase. Journal of Neural Transmission. 2010; 118(7): 1101–1109. doi: 10.1007/s00702-010-0559-4
21. Oldfield RN, Johnston KA, Limones J, Ghilarducci C, Lopez KM. Identification of Histidine 303 as the Catalytic Base of Lysyl Oxidase via Site-Directed Mutagenesis. The Protein Journal. 2018; 37: 47–57. doi: 10.1007/s10930-017-9749-3
22. Greene AG, Eivers SB, Dervan EWJ, O’Brien CJ, Wallace DM. Lysyl Oxidase Like 1: Biological roles and regulation. Exp Eye Res. 2020: 193: 107975. doi: 10.1016/j.exer.2020.107975
23. Noda K, Kitagawa K, Miki T, Horiguchi M, O Akama T, Taniguchi T, et al. A matricellular protein fibulin-4 is essential for the activation of lysyl oxidase. Sci Adv. 2020; 6(48): eabc1404. doi: 10.1126/sciadv.abc1404
24. Trackman PC. Functional importance of lysyl oxidase family propeptide regions. Journal of Cell Communication and Signaling. 2017; 12(1): 45–53. doi: 10.1007/s12079-017-0424-4
25. Vallet SD, Ricard-Blum S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 2019; 63(3): 349-364. doi: 10.1042/EBC20180050
26. Fogelgren B, Polgár N, Szauter KM, Újfaludi Z, Laczkó R, Fong KSK, et al. Cellular Fibronectin Binds to Lysyl Oxidase with high affinity and is critical for its proteolytic activation. Journal of Biological Chemisntry. 2005; 280(26): 24690-24697. doi: 10.1074/jbc.M412979200
27. Kalamajski S, Bihan D, Bonna A, Rubin K, Farndale RW. Fibromodulin interacts with collagen cross-linking sites and activates lysyl oxidase. J Biol Chem. 2016; 291(15): 7951-60. doi: 10.1074/jbc.M115.693408
28. Rosini S, Pugh N, Bonna AM, Hulmes DJS, Farndale RW, Adams JC. Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Sci. Signal. 2018; 11(532): eaar2566. doi: 10.1126/scisignal.aar2566
29. Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kühl U, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011; 57(8): 977-85. doi: 10.1016/j.jacc.2010.10.024
30. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020; 217(3): e20190103. doi: 10.1084/jem.20190103
31. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem. 2022; 298(2): 101530. doi: 10.1016/j.jbc.2021.101530
32. Bhattacharyya S, Midwood KS, Varga J. Tenascin-C in fibrosis in multiple organs: Translational implications. Semin Cell Dev Biol. 2022: 128: 130-136. doi: 10.1016/j.semcdb.2022.03.019
33. Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules. 2020; 10(8): 1093. doi: 10.3390/biom10081093
34. Mohamed IA, Gadeau A-P, Hasan A, Abdulrahman N, Mraiche F. Osteopontin: a promising therapeutic target in Cardiac Fibrosis. Cells. 2019; 8(12): 1558. doi: 10.3390/cells8121558
35. Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019; 71(11): 1729- 1739. doi: 10.1002/iub.2112
36. Galán M, Varona S, Guadall A, Orriols M, Navas M, Aguiló S, et al. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. FASEB J. 2017; 31(9): 3787-3799. doi: 10.1096/fj.201601157RR
37. Faure E, Busso N, Nasi S. Roles of Lysyl oxidases (LOX(L)) in pathologic calcification. Biomed Pharmacother. 2024: 181: 117719. doi: 10.1016/j.biopha.2024.117719
38. Narayanan AS, Siegel RC, Martin GR. On the inhibition of lysyl oxidase by –aminopropionitrile. Biochem Biophys Res Commun. 1972; 46(2): 745-51. doi: 10.1016/s0006-291x(72)80203-1
39. Ohmura H, Yasukawa H, Minami T, Sugi Y, Oba T, Nagata T, et al. Cardiomyocyte-specific transgenic expression of lysyl oxidase-like protein-1 induces cardiac hypertrophy in mice. Hypertens Res. 2012; 35(11): 1063-8. doi: 10.1038/hr.2012.92
40. El Hajj EC, El Hajj MC, Ninh VK, Gardner JD. Cardioprotective effects of lysyl oxidase inhibition against volume overload-induced extracellular matrix remodeling. Exp Biol Med (Maywood). 2016; 241(5): 539-49. doi: 10.1177/1535370215616511
41. Harlow CR, Wu X, van Deemter M, Gardiner F, Poland C, Green R, et al. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS One. 2017; 12(8): e0183013. doi: 10.1371/journal.pone.0183013
42. Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang C-L, et al. β-Aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. Arterioscler Thromb Vasc Biol. 2024; 44(7): 1555-1569. doi: 10.1161/ATVBAHA.123.320402
43. Chu Q, Xiao Y, Song X, Kang YJ. Extracellular matrix remodeling is associated with the survival of cardiomyocytes in the subendocardial region of the ischemic myocardium. Exp Biol Med (Maywood). 2021; 246(24): 2579- 2588. doi: 10.1177/15353702211042020
44. Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016: 7: 13710. doi: 10.1038/ncomms13710
45. Wu Y, Luo J, Song X, Gu W, Wang S, Hao S, et al. Irisin attenuates angiotensin II-induced atrial fibrillation and atrial fibrosis via LOXL2 and TGFβ1/Smad2/3 signaling pathways. Iran J Basic Med Sci. 2023; 26(6): 717-724. doi: 10.22038/IJBMS.2023.68639.14967
46. Hai Z, Wu Y, Ning Z. Salidroside attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II through inhibition of LOXL2-TGF-β1-Smad2/3 pathway. Heliyon. 2023; 9(11): e21220. doi: 10.1016/j.heliyon.2023.e21220
47. Radhakrishnan S, Shenoy SJ, Devidasan I, Shaji BV, Gopal S, Sreekumaran S, et al. Periostin regulates lysyl oxidase through ERK1/2 MAPK-dependent serum response factor in activated cardiac fibroblasts. Cell Biochem Funct. 2024; 42(4): e4066. doi: 10.1002/cbf.4066
48. Adam O, Zimmer C, Hanke N, Hartmann RW, Klemmer B, Böhm M, et al. Inhibition of aldosterone synthase (CYP11B2) by torasemide prevents atrial fibrosis and atrial fibrillation in mice. J Mol Cell Cardiol. 2015: 85: 140-50. doi: 10.1016/j.yjmcc.2015.05.019
49. Miguel-Carrasco JL, Beaumont J, José GS, Moreno MU, López B, González A, et al. Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Sci Rep. 2017; 7: 41865. doi: 10.1038/srep41865
50. Yang N, Cao D-F, Yin X-X, Zhou H-H, Mao X-Y. Lysyl oxidases: Emerging biomarkers and therapeutic targets for various diseases. Biomed Pharmacother. 2020: 131: 110791. doi: 10.1016/j.biopha.2020.110791
51. Ma T, Qiu F, Gong Y, Cao H, Dai G, Sun D, et al. Therapeutic silencing of lncRNA RMST alleviates cardiac fibrosis and improves heart function after myocardial infarction in mice and swine. Theranostics. 2023; 13(11): 3826-3843. doi: 10.7150/thno.82543
Review
For citations:
Dremina N.N., Trukhan I.S., Shurygina I.A., Shurygin M.G. Lysyl oxidase in the pathology of the heart. Acta Biomedica Scientifica. 2025;10(4):37-47. (In Russ.) https://doi.org/10.29413/ABS.2025-10.4.4