Preview

Acta Biomedica Scientifica

Advanced search

Study of electrocardiogram parameters in rats in the sucrose model of metabolic syndrome

https://doi.org/10.29413/ABS.2025-10.2.23

Abstract

Background. Existing data regarding electrocardiographic changes in rat models of metabolic syndrome are incomplete and contradictory.

The aim. Study of electrocardiogram (ECG) parameters in rats in the sucrose model of metabolic syndrome.

Materials and methods. Experiments were performed on male Wistar rats. During the entire experiment (11–13 weeks), the animals had free access to dry food, regular and sugar-sweetened (30 %) drinking water. A glucose tolerance test (GTT), ECG, random glucose, insulin, cholesterol and organ weight measurements were also performed.

Results. Experimental animals preferred to drink sweetened water but almost completely compensated for the excess calories obtained from sugar in water by reducing their consumption of dry food. Fasting glucose and weight gain did not diff between animal groups. However, random glucose, area under the curve in GTT, and relative weights of heart, liver, and abdominal fat were higher in experimental animals compared to controls. In addition, the area of the T-wave of the ECG as well as the TpTe / QT ratio in experimental animals were statistically greater than those in the control.

Conclusion. The data obtained confirm the development of moderate metabolic syndrome and may indicate the development of cardiac hypertrophy and / or slowing / desynchronization of cardiac muscle repolarization (increased duration and area of the ECG T-wave) in rats after 11–13 weeks of free access to sugar-sweetened (30 %) water.

About the Authors

Yu. A. Filippov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Yury A. Filippov – post-graduate student, Junior Researcher Officer at the Neuroregulation of Muscle Function Group 

Thorez str., 44, 194223 St. Petersburg



A. V. Stepanov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Andrey V. Stepanov – Junior Researcher Officer at the Neuroregulation of Muscle Function Group

Thorez str., 44, 194223 St. Petersburg



O. Yu. Karnishkina
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Olga Yu. Karnishkina – Junior Researcher Officer at the Neuroregulation of Muscle Function Group 

Thorez str., 44, 194223 St. Petersburg



A. A. Panov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Alexander A. Panov – Cand. Sc. (Biol.), Researcher Officer at the Neuroregulation of Muscle Function Group 

Thorez str., 44, 194223 St. Petersburg



O. V. Chistyakova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Oksana V. Chistyakova – Cand. Sc. (Biol), Senior Researcher Officer at the Laboratory for Molecular Endocrinology and Neurochemistry 

Thorez str., 44, 194223 St. Petersburg



M. G. Dobretsov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

Maxim G. Dobretsov – Cand. Sc. (Biol), Leading Researcher Officer at the Neuroregulation of Muscle Function Group

Thorez str., 44, 194223 St. Petersburg



References

1. Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018; 20(5): 853-872. doi: 10.1002/ejhf.1170

2. Paolillo S, Marsico F, Prastaro M, Renga F, Esposito L, De Martino F, et al. Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Fail Clin. 2019; 15(3): 341-347. doi: 10.1016/j.hfc.2019.02.003

3. Wang J, Song Y, Wang Q, Kralik PM, Epstein PN. Causes and Characteristics of Diabetic Cardiomyopathy. Rev Diabet Stud. 2006; 3(3): 108-108. doi: 10.1900/RDS.2006.3.108

4. Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol. 2018; 114(1): 2. doi: 10.1007/s00395-018-0711-0

5. Marcinkiewicz A, Ostrowski S, Drzewoski J. Can the onset of heart failure be delayed by treating diabetic cardiomyopathy? Diabetol Metab Syndr. 2017; 9: 21. doi: 10.1186/s13098-017-0219-z

6. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010; 59(8): 2020-2026. doi: 10.2337/db10-0165

7. Schainberg A, Ribeiro-Oliveira A, Ribeiro JM. Is there a link between glucose levels and heart failure? An update. Arq Bras Endocrinol Metabol. 2010; 54(5): 488-497. doi: 10.1590/s0004-27302010000500010

8. Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A. Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol. 2015; 14: 4. doi: 10.1186/s12933014-0168-x

9. Moshkovits Y, Rott D, Chetrit A, Dankner R. The association between insulin sensitivity indices, ECG fi ings and mortality: a 40-year cohort study. Cardiovasc Diabetol. 2021; 20(1): 97. doi: 10.1186/s12933-021-01284-9

10. Packer M. Heart Failure: The Most Important, Preventable, and Treatable Cardiovascular Complication of Type 2 Diabetes. Diabetes Care. 2018; 41(1): 11-13. doi: 10.2337/dci17-0052

11. Agarwal K, Thakur D, Gupta A, Gupta R. Electrocardiography Indices in Healthy Metabolic Syndrome Patients: Markers for Future Cardiovascular Risk. J Clin Prev Cardiol. 2021; 10: 2-7. doi: 10.4103/jcpc.jcpc_52_20

12. Simonyi G. Electrocardiological features in obesity: the benefi of body surface potential mapping. Cardiorenal Med. 2014; 4(2): 123-129. doi: 10.1159/000365012

13. Albarado-Ibañez A, Avelino-Cruz JE, Velasco M, Torres-Jácome J, Hiriart M. Metabolic syndrome remodels electrical activity of the sinoatrial node and produces arrhythmias in rats. PloS One. 2013; 8(11): e76534. doi: 10.1371/journal.pone.0076534

14. Durak A, Olgar Y, Tuncay E, Karaomerlioglu I, Kayki Mutlu G, Arioglu E, et al. Onset of Depressed Heart Work is Correlated with the Increased Heart Rate and Shorten QT-Interval in High-Carbohydrate Fed Overweight Rats. Can J Physiol Pharmacol. 2017; 95. doi: 10.1139/cjpp-2017-0054

15. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B. A SGLT2 inhibitor dapaglifl zin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. 2018; 17. doi: 10.1186/s12933-018-0790-0

16. Torres-Jacome J, Ortiz-Fuentes BS, Bernabe-Sanchez D, Lopez-Silva B, Velasco M, Ita-Amador ML, et al. Ventricular Dysfunction in Obese and Nonobese Rats with Metabolic Syndrome. J Diabetes Res. 2022; 2022: 9321445. doi: 10.1155/2022/9321445

17. Filippov YA, Stepanov AV, Karnishkina OY, Panov AA, Chistyakova OV, Dobretsov MGг. Comparison of liquid and dry sucrose diets in the development of a model of metabolic syndrome in rats. Integr Physiol. 2023; 4(3): 373-378. doi: 10.33910/2687-1270-2023-4-3-373-378

18. Guzmán-Gerónimo RI, Alarcón-Zavaleta TM, Oliart-Ros RM, Meza-Alvarado JE, Herrera-Meza S, Chávez-Servia JL. Blue Maize Extract Improves Blood Pressure, Lipid Profi , and Adipose Tissue in High-Sucrose Diet-Induced Metabolic Syndrome in Rats. J Med Food. 2017; 20(2): 110-115. doi: 10.1089/jmf.2016.0087

19. Burgeiro A, Cerqueira MG, Varela-Rodríguez BM, Nunes S, Neto P, Pereira FC, et al. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet. Nutrients. 2017; 9(6): 638. doi: 10.3390/nu9060638

20. Murakami M, Niwa H, Kushikata T, Watanabe H, Hirota K, Ono K, et al. Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biol Pharm Bull. 2014; 37(5): 834-839. doi: 10.1248/bpb.b14-00012

21. Acosta-Cota SDJ, Aguilar-Medina EM, Ramos-Payán R, Ruiz-Quiñónez AK, Romero-Quintana JG, Montes-Avila J, et al. Histopathological and biochemical changes in the development of nonalcoholic fatty liver disease induced by high-sucrose diet at different times. Can J Physiol Pharmacol. 2019; 97(1): 23-36. doi: 10.1139/cjpp-2018-0353

22. Balderas-Villalobos J, Molina-Muñoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gómez-Viquez NL. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol. 2013; 305(9): H1344-1353. doi: 10.1152/ajpheart.00211.2013

23. Howarth F, Qureshi A, Adeghate E. Contraction and intracellular free Ca2+ concentration in ventricular myocytes from rats receiving sucrose-enriched diets. Int J Diabetes Metab. 2004; 12. doi: 10.1159/000497560

24. Nunes S, Soares E, Fernandes J, Viana S, Carvalho E, Pereira FC, et al. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc Diabetol. 2013; 12: 44. doi: 10.1186/1475-2840-12-44

25. Vasanji Z, Cantor EJF, Juric D, Moyen M, Netticadan T. Alterations in cardiac contractile performance and sarcoplasmic reticulum function in sucrose-fed rats is associated with insulin resistance. Am J Physiol Cell Physiol. 2006; 291(4): 772-780. doi: 10.1152/ajpcell.00086.2005

26. Kang YJ. Cardiac Hypertrophy: A Risk Factor for QT-Prolongation and Cardiac Sudden Death. Toxicol Pathol.2006;34(1):58-66.doi:10.1080/01926230500419421

27. Afolabi OA, Alabi BA, Oluranti O. Diet-induced insulin resistance altered cardiac GLUT4 and FATP/CD36 expression in rats. Beni-Suef Univ J Basic Appl Sci. 2022; 11(1): 131. doi: 10.1186/s43088-022-00312-1

28. Billur D, Olgar Y, Durak A, Yozgat AH, Unay S, Tuncay E, et al. An increase in intercellular crosstalk and electrotonic coupling between cardiomyocytes and nonmyocytes reshapes the electrical conduction in the metabolic heart characterized by short QT intervals in ECGs. 2023; 41(8): 1526-1542. doi: 10.1002/cbf.3893

29. Billur D, OlgarY,Turan B. Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin-resistant Elderly Rats. J Histochem Cytochem Off J Histochem Soc. 2022; 70(6): 447-462. doi: 10.1369/00221554221101661

30. Durak A, Akkus E, Canpolat AG, Tuncay E, Corapcioglu D, Turan B. Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca2+ abnormalities and mitochondrial dysfunction. Clin Exp Pharmacol Physiol. 2022; 49(1): 46-59. doi: 10.1111/1440-1681.13590

31. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. Tp-e/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008; 41(6): 567-574. doi: 10.1016/j.jelectrocard.2008.07.016

32. Karaagac K, Emul A, Tenekecioglu E, Agca FV, Ozluk OA, Tutuncu A, et al. The Effects of Metabolic Syndrome on TpTe Interval and TpTe/QT Ratio in Patients with Normal Coronary Arteries. Eurasian J Med. 2014; 46(3): 182-186. doi: 10.5152/eajm.2014.48


Review

For citations:


Filippov Yu.A., Stepanov A.V., Karnishkina O.Yu., Panov A.A., Chistyakova O.V., Dobretsov M.G. Study of electrocardiogram parameters in rats in the sucrose model of metabolic syndrome. Acta Biomedica Scientifica. 2025;10(2):229-238. (In Russ.) https://doi.org/10.29413/ABS.2025-10.2.23

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)