The importance of markers of osteolysis and osteogenesis in the pathogenesis of cephalohematoma in newborns
https://doi.org/10.29413/ABS.2025-10.1.15
Abstract
Background. Of particular importance in the repair process for cephalohematomas is the pathological remodeling of the bones of the cranial vault. Local changes in the bones of the skull are accompanied by the processes of osteolysis and osteogenesis and have uncertain dynamics. Changes in the state of bone tissue in cephalohematomas can be monitored based on determining the concentration of markers of osteolysis and osteogenesis in the blood of newborns.
The aim. To define the level of markers of osteolysis (beta-CrossLaps) and osteogenesis (N-osteocalcin, vascular endothelial growth factor receptor 1 (VEGFR1)) in the venous blood serum of newborns with cephalohematomas and evaluate the dynamics of local bone changes.
Methods. There were 90 newborns under observation, 30 patients with medium and large cephalohematomas (the cephalohematoma was punctured), 30 patients with small cephalohematomas (the puncture was not performed) and 30 healthy children. The level of markers of osteolysis and osteogenesis in the blood was determined by photometry using an enzyme-linked immunosorbent assay. Registration of local bone changes was carried out using ultrasonography and craniometry.
Results. The level of beta-CrossLaps in patients from the first group was 2.57 times higher, and in patients from the second group 4.45 times higher, than in healthy newborns on day 10 (p < 0.001). The concentration of N-Osteocalcin on day 10 in the second group was 1.43 times higher than in the first group (p < 0.001). The concentration of VEGFR1 in patients from the first group was 1.9 times higher, and in patients from the second group 3.01 times higher than in the control group (p < 0.001). Local osteolytic changes in the skull predominated in patients of the first group on day 10, and ossification in the second group on day 28 of observation (p < 0.001).
Conclusion. Reparation for cephalohematomas is associated with the phenomena of resorption of the bones of the cranial vault and pathological ossification of hemorrhage in the zone of periosteum separation. Changes in the level of markers of osteogenesis and osteolysis in venous blood serum in patients with cephalohematomas may reflect the dynamics and direction of the pathophysiological process of remodeling of the bones of the cranial vault.
About the Authors
R. A. SushchenkoRussian Federation
Ruslan A. Sushchenko – Teaching Assistant at the Department of Advanced Level Surgery with a Course of Pediatric Surgery,
Gorkogo str. 39A, Chita 672000
A. S. Panchenko
Russian Federation
Aleksandra S. Panchenko – Dr. Sc. (Med.), Professor at the Department of Neonatology with Courses of Neurology and Obstetrics and Gynecology of the Faculty of Postgraduate and Additional Professional Education,
Litovskaya str. 2, Saint Petersburg 194100
References
1. Iova AS. Features of the management of newborns with cephalohematomas: Individualized approach and minimal invasiveness. StatusPraesens. Pediatrics and Neonatology. 2020; 3-4(70-72): 101-105. (In Russ.).
2. Kiosov AF, Galiaskarova AR. Risk factors and clinical features of the formation of cephalhematoma in newborns. Ural Medical Journal. 2019; 15(183): 23-27. (In Russ.). doi: 10.25694/urmj.2019.15.07
3. Kandemirli SG, Cingoz M, Bilgin C, Olmaz B. Temporal evolution of imaging findings in ossified cephalohematoma. J Craniofac Surg. 2020; 31(4): 375-378. doi: 10.1097/scs.0000000000006319
4. Calloni T, Trezza A, Mazzoleni F, Cavaliere M, Canonico F, Sganzerla E, et al. Infant ossified cephalohematoma: A review of the surgical management and technical update. J Neurosurg Sci. 2020; 64(6): 552-557. doi: 10.23736/s0390-5616.20.05052-3
5. Üçer M, Taçyıldız AE, Aydın I, Akkoyun KN, Işık S. Observational case analysis of neonates with large cephalohematoma. Cureus. 2021; 13(4): 14415. doi: 10.7759/cureus.14415
6. Kopacz A, Nagy L, Demke J. Bilateral cephalohematoma with sagittal synostosis and scaphocephaly. J Craniofac Surg. 2020; 31(3): 260-261. doi: 10.1097/scs.0000000000006223
7. Wong CH, Foo CL, Seow WT. Calcified cephalohematoma: Classification, indications for surgery and techniques. J Craniofac Surg. 2006; 17(5): 970-979. doi: 10.1097/01.scs.0000229552.82081.de
8. Ulma RM, Sacks G, Rodoni BM, Duncan A, Buchman AT, Buchman BC, et al. Management of calcified cephalohematoma of infancy: The University of Michigan 25-year experience. Plast Reconstr Surg. 2021; 148(2): 409-417. doi: 10.1097/prs.0000000000008199
9. Mirsadykov DA, Minozhov MM, Abdumazhitova AM, Makhmaev TI. Variants of evolution calcificated cephalohematoma. Pediatric Neurosurgery and Neurology. 2010; 2(24): 50-57. (In Russ.).
10. Vasilyeva EA, Strokova TV, Surkov AG. Bone remodeling in children with hepatic forms of glycogen storage disease. Russian Medical Journal. 2019; 27(7): 34-38. (In Russ.).
11. Khalyapina AB, Parshikov MV, Yarygin NV. Early diagnosis of osteocartilaginous changes in osteoarthritis. Department of Traumatology & Orthopedics. 2022; 3(49): 90-98. (In Russ.). doi: 10.17238/2226-2016-2022-3-90-98
12. Zejnalov JL, Diachkova GV, Sutyagin IV, Larionova TA, Diachkov KA. Indicators of calcium metabolism and markers of bone formation in patients with idiopathic scoliosis depending on age. Transbaikalian Medical Bulletin. 2021; 2: 47-55. (In Russ.). doi: 10.52485/19986173_2021_2_47
13. Rud’ko AS, Efendieva MKh, Budzinskaia MV, Karpilova MA. Influence of vascular endothelial growth factor on angiogenesis and neurogenesis. Russian Annals ofOphthalmology. 2017; 133(3): 75-81. (In Russ.). doi: 10.17116/oftalma2017133375-80
14. Bozo IY, Rozhkov SI, Komlev VS, Volozhin GA, Eremin II, Smirnov IV, et al. Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium phosphate and plasmid DNA carrying VEGF and SDF genes: Part 2 – in vivo. Genes & Cells. 2017; 12(4): 39-46. (In Russ.). doi: 10.23868/201707028
15. Mudrov VA. Algorithms for statistical analysis of biomedical research data using the SPSS software package (in accessible language): Textbook. Moscow: Logosfera; 2022. (In Russ.).
16. Carvalho F, Medeiros I, Correa F, Pontes FS, Amado M. Hard cranial mass: Cephalohematoma? J Pediatr Neonat Individual Med. 2019; 8(1): 080107. doi: 10.7363/080107
17. Idrissi KJ, Mimi AL, Hassani YE, Haloua M, Alami B, Lamrani AY, et al. Calcified cephalohematoma 02 cases report. IOSR J Dent Med Sci. 2019; 18(1): 61-65. doi: 10.9790/0853-1801036165
18. Vigo V, Battaglia DI, Frassanito P, Tamburrini G, Caldarelli M, Massimi L. Calcified cephalohematoma as an unusual cause of EEG anomalies: Case report. J Neurosurg Pediatr. 2017; 19(1): 46-50. doi: 10.3171/2016.6.peds16120
19. Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 2020; 21(20): 7513. doi: 10.3390/ijms21207513
20. Wang JS, Mazur CM, Wein MN. Sclerostin and osteocalcin: Candidate bone-produced hormones. Front Endocrinol (Lausanne). 2021; 12: 584147. doi: 10.3389/fendo.2021.584147
21. Stock M, Schett G. Vitamin K-dependent proteins in skeletal development and disease. Int J Mol Sci. 2021; 22(17): 9328. doi: 10.3390/ijms22179328
22. Lombardi G, Perego S, Luzi L, Banfi G. A four-season molecule: Osteocalcin. Updates in its physiological roles. Endocrine. 2015; 48(2): 394-404. doi: 10.1007/s12020-014-0401-0
23. Rashdan NA, Sim AM, Cui L, Phadwal K, Roberts FL, Carter R, et al. Osteocalcin regulates arterial calcification via altered Wnt signaling and glucose metabolism. J Bone Miner Res. 2020; 35(2): 357-367. doi: 10.1002/jbmr.3888
24. Shibuya M. VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets. 2015; 15(2): 135-144. doi: 10.2174/18715303156661 50316121956
25. Uemura A, Fruttiger M, D’Amore PA, De Falco S, Joussen AM, Sennlaub F, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021; 84: 100954 doi: 10.1016/j.preteyeres.2021.100954
Review
For citations:
Sushchenko R.A., Panchenko A.S. The importance of markers of osteolysis and osteogenesis in the pathogenesis of cephalohematoma in newborns. Acta Biomedica Scientifica. 2025;10(1):144-150. (In Russ.) https://doi.org/10.29413/ABS.2025-10.1.15