Preview

Acta Biomedica Scientifica

Advanced search

Dynamics of ATPase activity and lipid peroxidation indicators in liver tissue in experimental peritonitis using the drug “Seroguard”

https://doi.org/10.29413/ABS.2024-9.6.23

Abstract

Background. Oxidative stress plays an important role in the development of peritonitis, which leads to a decrease in antioxidant level and an increase in oxidant production. Studying ATPase activity and lipid peroxidation when using new methods of treating experimental peritonitis is of interest for clinical practice.

The aim. To study the dynamics of ATPase activity and lipid peroxidation indicators in liver tissue in experimental peritonitis when using Serogard.

Methods. The study was conducted on male Wistar rats aged 6 months. All animals were subjected to experimental peritonitis using the method we developed. Animals in the control group (n = 20) were intraperitoneally injected with 3 ml of physiological solution one day after modeling peritonitis; animals in the experimental group (n = 19) were injected Serogard® (AO Pharmasintez, Russia). We determined the initial values of the indicators in healthy rats (n = 7). In animal liver tissue, total and mitochondrial ATPase activity was  studied, as  well  as the  content of  malondialdehyde (MDA) and diene conjugates (DC).

Results. It was found that the total and mitochondrial activity of ATPases was suppressed by the day 3 of experimental peritonitis. During 14 days of the experiment, ATPase activity did not reach normal levels in any of the groups. However, animals in  the  experimental group had dynamics of  a  more steady, significant increase in the total ATPase and the mitochondrial ATPase (ATP synthase) activity with a significantly higher level than in the control group. MDA and DC in the experimental group increased by days 7–14, which indicated the activity of free radical processes and was also an indicator of the dynamics of restoration of metabolic and energy processes.

Conclusion. Using Serogard in experimental peritonitis contributed to a more effective restoration of total ATPase activity and mitochondrial ATPase (ATP synthase) and on days 7–14 of the study led to an increase in the level of free radical processes activity that accompany and indicate the process of aerobic energy restoration.

About the Authors

E. E. Chepurnykh
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Elena E. Chepurnykh – Cand. Sc. (Med), Academic Secretary, 

Bortsov Revolyutsii str. 1, Irkutsk 664003



S. L. Bogorodskaya
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Svetlana  L. Bogorodskaya – Cand.  Sc. (Biol), Research Officer at  the  Laboratory of  Cell Pathophysiology and  Biochemistry,

Bortsov Revolyutsii str. 1, Irkutsk 664003



I. A. Shurygina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Irina A. Shurygina – Dr. Sc. (Med), Professor of the RAS, Deputy Director for Science,

Bortsov Revolyutsii str. 1, Irkutsk 664003



L. V. Rodionova
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Lyubov V. Rodionova – Cand. Sc. (Biol.), Head of the Laboratory of Cell Pathophysiology and Biochemistry,

Bortsov Revolyutsii str. 1, Irkutsk 664003



L. G. Samoilova
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Liliya G. Samoilova – Junior Research Officer at the Laboratory of Cell Pathophysiology and Biochemistry, 

Bortsov Revolyutsii str. 1, Irkutsk 664003



M. G. Shurygin
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Mikhail G. Shurygin – Dr. Sc. (Med.), Head of the Scientific Laboratory Department, 

Bortsov Revolyutsii str. 1, Irkutsk 664003



References

1. Feniouk BA. Welcome to ATP synthase. URL: https://www.atpsynthase.info/ [date of access: 23.06.2024].

2. Kassimeris L, Lingappa VP, Plopper D. Cells according to Lewin. Moscow: Laboratoriya znaniy; 2021: 234-298. (In Russ.).

3. Cherenkevich SN, Martinovich GG, Khmelnitsky AI. Biological membranes. Minsk; 2009: 145-160. (In Russ.).

4. KhanYA, White KI, Brunger AT. The AAA+superfamily: A review ofthe structural andmechanistic principles ofthese molecular machines. Crit Rev Biochem Mol Biol. 2022; 57(2): 156-187. doi: 10. 1080/10409238.2021.1979460

5. Uzlova EV, Zimatkin SM. Mitochondrial ATP synthase. Journal of the Grodno State Medical University. 2020; 18(6): 648-654. (In Russ.). doi: 10.25298/2221-8785-2020-18-6-648-654

6. Boldyrev AA, Kyaivyaryainen EI, Ilyukha VA. Biomembranology. Petrozavodsk; 2006: 128-143. (In Russ.).

7. Silkin YuA, Silkina EN, Silkin MYu. The effect of azide, fluoride, orthovanadate, and EDTA sodium salts on ecto-atpase activity of red blood cells in a scorpionfish (Scorpaena porcus L.) and thornback ray (Raja clavata L.). Journal of Evolutionary Biochemistry and Physiology. 2021; 57(5): 380-391. (In Russ.). doi: 10.31857/S0044452921050077

8. Garcia-Bermudez J, Cuezva JM. The ATPase inhibitory factor 1 (IF1): A master regulator of energy metabolism and of cell survival. Biochim Biophys Acta. 2016; 1857(8): 1167-1182. doi: 10.1016/j.bbabio.2016.02.004

9. Kumar V, Kumar TRS, Kartha CC. Mitochondrial membrane transporters and metabolic switch in heart failure. Heart Fail Rev. 2019; 24(2): 255-267. doi: 10.1007/s10741-018-9756-2

10. Skogestad J, Aronsen JM. Hypokalemia-induced arrhythmias and heart failure: New insights and implications for therapy. Front Physiol. 2018; 9: 1500. doi: 10.3389/fphys.2018.01500

11. Magalhaes D, Cabral JM, Soares-da-Silva P, Magro F. Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2016; 310(7): 460-476. doi: 10.1152/ajpgi.00369.2015

12. Bogorodskaya SL, Klinova SN, Mikashova MB, Golubev SS, Pivovarov YuI, Kurilskaya TE, et al. Transplantation of xenogenic cardiomyocytes in experimental epinephrine-induced damage to myocardium: Enzyme activity and morphological parameters. Bulletin of Experimental Biology andMedicine. 2008; 146(1): 120-123. doi: 10.1007/s10517-008-0218-z

13. Makarenko EV. ATPase activity of erythrocytes in chronic diseases ofthe liver and stomach. Laboratornoe delo. 1987; (2): 14-17. (In Russ.).

14. Supinski GS, Schroder EA, Callahan LA. Mitochondria and critical illness. Chest. 2020; 157(2): 310-322. doi: 10.1016/j.chest.2019.08.2182

15. XiaY, LiuN, XieX, BiG, BaH, Li L, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy. 2019; 15(6): 960-975. doi: 10.1080/15548627.2019.1569916

16. Zhang J, Chang J, Beg MA, Huang W, Zhao Y, Dai W, et al. Na/K-ATPase suppresses LPS-induced pro-inflammatory signaling through Lyn. iScience. 2022; 25(9): 104963. doi: 10.1016/j.isci.2022.104963

17. Sukovatykh BS, Konoplya AI, Blinkov YuYu. Mechanisms of development and correction of immune and oxidative disorders in case of peritonitis. Pirogov Russian Journal of Surgery. 2015; (9): 91-95. (In Russ.). doi: 10.17116/hirurgia2015991-95

18. Petukhov VA, Son DA, Mironov AV. Endotoxin aggression and endothelial dysfunction in intestinal insufficiency syndrome in emergency surgery of abdominal organs: Causal relationships. Annals of Surgery. 2006; 5: 27-33. (In Russ.).

19. ZhangX, LiuH, Hashimoto K, Yuan S, Zhang J. The gut-liver axis in sepsis: Interaction mechanisms and therapeutic potential. Crit Care. 2022; 26(1): 213. doi: 10.1186/s13054-022-04090-1

20. Yarotskaya NN, Kosinets VA, Karalkova NK. Changes in the functional activity of the liver in experimental generalized purulent peritonitis with the application of energotropic correction. Vitebsk Medical Journal. 2018; 17(6): 46-54. (In Russ.). doi: 10.22263/2312-4156.2018.6.46

21. Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O’Shea JJ. Protein kinases: Drug targets forimmunological disorders. Nat Rev Immunol. 2023; 23(12): 787-806. doi: 10.1038/s41577-023-00877-7

22. Shurygina IA, Shurygin MG, Chepurnykh EE. Method for treating enteral insufficiency in inflammatory and traumatic injuries of the peritoneum: Patent No. 2749435 of the Russian Federation. 2021; (16). (In Russ.).

23. Chepurnykh EE, Shurygina IA, Fadeeva TV, Dremina NN, Shurygin MG. p38 MAPK inhibitors in the treatment of experimental peritonitis. Clinical and Experimental Surgery. Petrovsky Journal. 2024; 12 (3): 32-39. (In Russ.). doi: 10.33029/2308-1198-2024-12-3-32-39

24. Chepurnykh EE, Shurygina IA, Fadeeva TV, Grigoriev EG. Method for modeling peritonitis: Pat. No. 2716482 of the Russian Federation. 2020; (8). (In Russ.).

25. Chepurnykh EE, Shurygina IA, Fadeeva TV, Grigoryev EG. Experimental modeling of general purulent peritonitis. Acta biomedica scientifica. 2019; 4(3): 117-121. (In Russ.). doi: 10.29413/ABS.2019-4.3.15

26. Chepurnykh EE, Shurygina IA, Shaul’skaja ES, Shurygin MG. Role of cytokines in the pathogenesis of diffuse bacterial peritonitis. Acta biomedica scientifica. 2016; 1(4): 177-182. (In Russ.). doi: 10.12737/23029

27. Shurygina IA, Adelshin RV, Drozdova PB, Fadeeva TV, Shurygin MG. Bacteroides fragilis strain ISCST1982, whole genome shotgun sequencing project. URL: https://www.ncbi.nlm.nih.gov/nuccore/NZ_QUBP00000000.1?report=genbank [date of access: 23.06.2024].

28. Portyanaya NI, Osipenko VG, Moskadynova PA, Chernyak YuI, Novokhatsky NK, Gushchina AA, et al. Biochemical studies in a toxicological experiment. Irkutsk; 1990. (In Russ.).

29. Gavrilov VB, Mishkorudnaya MI. Spectrophotometric determination of lipid hydroperoxides in blood plasma. Laboratornoe delo. 1983; (3): 35-36. (In Russ.).

30. Yildirim Y, Cellad EG, Kara AV, Yilmaz Z, Kadiroglu AK, Bahadir MV, et al. Effect of intraperitoneal etanercept on oxidative stress in rats with peritonitis. Oxid Med Cell Longev. 2016; 2016: 9418468. doi: 10.1155/2016/9418468

31. DhallaNS, ElimbanV, Bartekova M, Adameova A. Involvement of oxidative stress in the development ofsubcellular defects and heart disease. Biomedicines. 2022; 10(2): 393. doi: 10.3390/biomedicines10020393

32. Bogorodskaya SL, Runovich AA. To the mechanism of adrenaline damage to the heart tissue and the mechanism of cardioprotection by neonatal, xenogenic, cardiac cells. Dynamics of creatine phosphate, lactate and malondialdehyde. Acta biomedica scientifica. 2020; 5(6): 265-270. (In Russ.). doi: 10.29413/ABS.2020-5.6.35

33. Srubilin DV, Enikeev DA, Myshkin VA, Akberdina GR, Pogorelov AM. The effect of the complex compound 5-oxy6-methyluracil with succinic acid and low-intensity laser radiation on the functional state of hepatocytes in chronic carbophosome intoxication. Vestnik ofNew Medical Technologies. 2016; (4): 125-133. (In Russ.). doi: 10.12737/22629


Review

For citations:


Chepurnykh E.E., Bogorodskaya S.L., Shurygina I.A., Rodionova L.V., Samoilova L.G., Shurygin M.G. Dynamics of ATPase activity and lipid peroxidation indicators in liver tissue in experimental peritonitis using the drug “Seroguard”. Acta Biomedica Scientifica. 2024;9(6):228-238. (In Russ.) https://doi.org/10.29413/ABS.2024-9.6.23

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)