Modern ideas of the role of the immune process and hemostasis in the pathogenesis of sepsis
https://doi.org/10.29413/ABS.2024-9.6.12
Abstract
The pathogenesis of sepsis as a pathological process, which is based on the body’s reaction in the form of generalized (systemic) inflammation to an infection of various nature, leading to acute multi-organ dysfunction, includes changes in the immune response, imbalance of pro-inflammatory and anti-inflammatory mechanisms, hemostasis disorders, hemodynamic disorders, microcirculation, activation of the hypothalamic-pituitary-adrenal system, and disorders of delivery, consumption, and utilization of oxygen. The predominance of the pro-inflammatory component over the anti-inflammatory one and damage to the primary barrier structures in the area of inflammation predetermines the breakthrough of inflammatory mediators into the systemic circulation. The dominance of the destructive effects of cytokines leads to a disorder of microcirculatory hemodynamics outside the primary focus, to the launch of disseminated vascular coagulation syndrome and organ failure. Sepsis is characterized by a hypercoagulable-hypofibrinolytic phenotype of changes in hemostasis, immunothrombosis as a result of endothelial dysfunction, platelet activation, autocoid-induced coagulation, activation of the external and internal coagulation pathways, and a decrease in the activity of the anticoagulation and fibrinolytic systems. Tumor necrosis factor α, interleukin (IL) 1β, IL-2, interferon γ, IL-10, HLA-DR (human leukocyte antigen – DR isotype), C3, C4, C5, C1 complement inhibitors, C3a, C5a, IgA, IgM, IgG, CD3+CD4+, CD3+CD8+, CD3+CD56+, CD3+CD19+ can be considered as biomarkers of changes in the immune response in sepsis. In order to detect hemostasis disorders in sepsis, promising biomarkers may be: total platelet count, von Willebrand factor, factor VIII, protein C, thrombomodulin, tissue factor pathway inhibitor, tissue-type plasminogen activator, plasminogen activator inhibitor 1, thrombin activatable fibrinolysis inhibitor. Further study of the immunological and coagulation links of the pathogenesis of sepsis will make it possible to determine the key diagnostic and prognostic biomarkers of sepsis. We analyzed 125 literature sources on the eLibrary, Medline, PubMed, RSCI sites, of which 64 sources met our criteria for use in a systematic review.
About the Authors
M. V. OsikovRussian Federation
Mikhail V. Osikov – Dr. Sc. (Med.), Professor, Head of the Department of Pathophysiology, Vorovskogo str. 64, Chelyabinsk 454092;
Head of the Department of Scientific Work, Vorovskogo str. 70, Chelyabinsk 454048
L. F. Telesheva
Russian Federation
Larisa F. Telesheva – Dr. Sc. (Med.), Professor at the Department of Microbiology, Virology and Immunology,
Vorovskogo str. 64, Chelyabinsk 454092
A. G. Konashov
Russian Federation
Aleksey G. Konashov – Cand. Sc. (Med.), Associate Professor at the Department of Pathophysiology, Vorovskogo str. 64, Chelyabinsk 454092;
Deputy Chief Physician for Medicine, Gorkogo str. 28, Chelyabinsk 454071
A. V. Gusev
Russian Federation
Andrei V. Gusev – Senior Laboratory Assistant at the Department of Pathophysiology, Vorovskogo str. 64, Chelyabinsk 454092;
Anesthesiologist and Intensive Care Specialist, Gorkogo str. 28, Chelyabinsk 454071
V. A. Konashov
Russian Federation
Vladislav A. Konashov – Laboratory Assistant at the Department of Pathophysiology, Vorovskogo str. 64, Chelyabinsk 454092;
Physician at the Emergency Department, Gorkogo str. 28, Chelyabinsk 454071
References
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus defnitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8): 801-810. doi: 10.1001/jama.2016.0287
2. Rudnov VA, Belsky DV, Dekhnich AV, RIORITA Study Group. Infections in Russian ICUs: Results of the nationwide multicenter study. Clinical Microbiology and Antimicrobial Chemotherapy. 2011; 13(4): 294-303. (In Russ.)
3. Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann P, et al. Incidence and mortality of hospitaland ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020; 46(8): 1552-1562. doi: 10.1007/s00134-020-06151-x
4. Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock – Basics of diagnosis, pathophysiology and clinical decision making. Med Clin North Am. 2020; 104(4): 573-585. doi: 10.1016/j.mcna.2020.02.011
5. Blot S, Antonelli M, Arvaniti K, Blot K, Creagh-Brown B, de Lange D, et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019; 45(12): 1703-1717. doi: 10.1007/s00134-019-05819-3
6. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019; 63(7): e00355-19. doi: 10.1128/AAC.00355-19
7. Holmes CL, Anderson MT, Mobley HLT, Bachman MA. Pathogenesis of gram-negative bacteremia. Clin Microbiol Rev. 2021; 34(2): e00234-20. doi: 10.1128/CMR.00234-20
8. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence. 2014; 5(1): 213-218. doi: 10.4161/viru.27024
9. Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci. 2019; 20(18): 4341. doi: 10.3390/ijms20184341
10. Wiersinga WJ, van der Poll T. Immunopathophysiology of human sepsis. EBioMedicine. 2022; 86: 104363. doi: 10.1016/j.ebiom.2022.104363
11. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
12. Sivayoham N, Blake LA, Tharimoopantavida SE, Chughtai S, Hussain AN, Rhodes A. Treatment variables associated with outcome in emergency department patients with suspected sepsis. Ann Intensive Care. 2020; 10(1): 136. doi: 10.1186/s13613-020-00747-8
13. Bicking K, Esguerra VG, Peck-Palmer OM, Magari RT, Julian MW, Kleven JM, et al. Monocyte distribution width: A novel indicator of sepsis-2 and sepsis-3 in high-risk emergency department patients. Crit Care Med. 2019; 47(8): 1018-1025. doi: 10.1097/CCM.0000000000003799
14. Vincent JL, Jones G, David S, Olariu E, Cadwell KK. Frequency and mortality of septic shock in Europe and North America: A systematic review and meta-analysis. Crit Care. 2019; 23(1): 196. doi: 10.1186/s13054-019-2478-6
15. Leligdowicz A, Matthay MA. Heterogeneity in sepsis: New biological evidence with clinical applications. Crit Care. 2019; 23(1): 80. doi: 10.1186/s13054-019-2372-2
16. Arora J, Mendelson AA, Fox-Robichaud A. Sepsis: Network pathophysiology and implications for early diagnosis. Am J Physiol Regul Integr Comp Physiol. 2023; 324(5): R613-R624. doi: 10.1152/ajpregu.00003.2023
17. Kozlov AV, Grillari J. Pathogenesis of multiple organ failure: The impact of systemic damage to plasma membranes. Front Med (Lausanne). 2022; 9: 806462. doi: 10.3389/fmed.2022.806462
18. Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: An overview. Braz J Infect Dis. 2020; 24(6): 552-560. doi: 10.1016/j.bjid.2020.09.004
19. Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev. 2020; 40(1): 158-189. doi: 10.1002/med.21599
20. Brands X, Haak BW, Klarenbeek AM, Otto NA, Faber DR, Lutter R, et al. Concurrent immune suppression and hyperinflammation in patients with community-acquired pneumonia. Front Immunol. 2020; 11: 796. doi: 10.3389/fimmu.2020.00796
21. Vachharajani V, McCall CE. Epigenetic and metabolic programming of innate immunity in sepsis. Innate Immun. 2019; 25(5): 267-279. doi: 10.1177/1753425919842320
22. Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis. Biomolecules. 2021; 11(7): 1011. doi: 10.3390/biom11071011
23. Mithal LB, Arshad M, Swigart LR, Khanolkar A, Ahmed A, Coates BM. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr Res. 2022; 91(2): 447-453. doi: 10.1038/s41390-021-01879-8
24. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 2020; 89(Pt B): 107087. doi: 10.1016/j.intimp.2020.107087
25. Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023; 13(1): e1170. doi: 10.1002/ctm2.1170
26. Joshi I, Carney WP, Rock EP. Utility of monocyte HLADR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol. 2023; 14: 1130214. doi: 10.3389/fimmu.2023.1130214
27. Ma L, Li Q, Cai S, Peng H, Huyan T, Yang H. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci. 2021; 18(14): 3236-3248. doi: 10.7150/ijms.59898
28. Feng T, Liao X, Yang X, Yang C, Lin F, Guo Y, et al. A shift toward inhibitory receptors and impaired effector functions on NK cells contribute to immunosuppression during sepsis. J Leukoc Biol. 2020; 107(1): 57-67. doi: 10.1002/JLB.4A0818-313RR
29. Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M. Targeting complement pathways in polytrauma- and sepsisinduced multiple-organ dysfunction. Front Immunol. 2019; 10: 543. doi: 10.3389/fimmu.2019.00543
30. Fattahi F, Zetoune FS, Ward PA. Complement as a major inducer of harmful events in infectious sepsis. Shock. 2020; 54(5): 595-605. doi: 10.1097/SHK.0000000000001531
31. Brady J, Horie S, Laffey JG. Role of the adaptive immune response in sepsis. Intensive Care Med Exp. 2020; 8(Suppl 1): 20. doi: 10.1186/s40635-020-00309-z
32. Martin MD, Badovinac VP, Griffith TS. CD4 T cell responses and the sepsis-induced immunoparalysis state. Front Immunol. 2020; 11: 1364. doi: 10.3389/fimmu.2020.01364
33. Dong X, Tu H, Qin S, Bai X, Yang F, Li Z. Insights into the roles of B cells in patients with sepsis. JImmunol Res. 2023; 2023: 7408967. doi: 10.1155/2023/7408967
34. Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, et al. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int J Mol Sci. 2021; 22(23): 13009. doi: 10.3390/ijms222313009
35. Mazer M, Unsinger J, Drewry A, Walton A, Osborne D, Blood T, et al. IL-10 has differential effects on the innate and adaptive immune systems of septic patients. J Immunol. 2019; 203(8): 2088-2099. doi: 10.4049/jimmunol.1900637
36. Akkaya M, Kwak K, Pierce SK. B cell memory: Building two walls of protection against pathogens. Nat Rev Immunol. 2020; 20(4): 229-238. doi: 10.1038/s41577-019-0244-2
37. Dong X, Wang C, Liu X, Gao W, Bai X, Li Z. Lessons learned comparing immune system alterations of bacterial sepsis and SARS-CoV-2 sepsis. Front Immunol. 2020; 11: 598404. doi: 10.3389/fimmu.2020.598404
38. Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil Med Res. 2022; 9(1): 56. doi: 10.1186/s40779-022-00422-y
39. Hohlstein P, Gussen H, Bartneck M, Warzecha KT, Roderburg C, Buendgens L, et al. Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. J Clin Med. 2019; 8(3): 353. doi: 10.3390/jcm8030353
40. Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020; 383(23): 2255-2273. doi: 10.1056/NEJMra2026131
41. Potapnev MP. Cytokine storm: Causes and consequences. Immunologiya. 2021; 42(2): 175-188. (In Russ.). doi: 10.33029/0206-4952-2021-42-2-175-188
42. Caraballo C, Jaimes F. Organ dysfunction in sepsis: An ominous trajectory from infection to death. Yale J Biol Med. 2019; 92(4): 629-640.
43. Gavelli F, Castello LM, Avanzi GC. Management of sepsis and septic shock in the emergency department. Intern Emerg Med. 2021; 16(6): 1649-1661. doi: 10.1007/s11739-021-02735-7
44. Pan S, Lv Z, Wang R, Shu H, Yuan S, Yu Y, et al. Sepsis-induced brain dysfunction: Pathogenesis, diagnosis, and treatment. Oxid Med Cell Longev. 2022; 2022: 1328729. doi: 10.1155/2022/1328729
45. Sun J, Zhang J, Wang X, Ji F, Ronco C, Tian J, et al. Gut-liver crosstalk in sepsis-induced liver injury. Crit Care. 2020; 24(1): 614. doi: 10.1186/s13054-020-03327-1
46. Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, Abediazar S, Shoja MM, Ardalan M, et al. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev Med Virol. 2021; 31(3): e2176. doi: 10.1002/rmv.2176
47. Yin J, Chen Y, Huang JL, Yan L, Kuang ZS, Xue MM, et al. Prognosis-related classification and dynamic monitoring of immune status in patients with sepsis: A prospective observational study. World J Emerg Med. 2021; 12(3): 185-191. doi: 10.5847/wjem.j.1920-8642.2021.03.004
48. Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina (Kaunas). 2022; 58(2): 144. doi: 10.3390/medicina58020144
49. Jiménez-Aguilar R, Sánchez-Zauco N, Tiburcio-Felix R, López JZ, Solano-Gutiérrez A, Riera C, et al. Effects of cardiopulmonary bypass on the development of lymphopenia and sepsis after cardiac surgery in children with congenital cardiopathy. Exp Ther Med. 2020; 19(1): 435-442. doi: 10.3892/etm.2019.8241
50. Mollnes TE, Huber-Lang M. Complement in sepsiswhen science meets clinics. FEBS Lett. 2020; 594(16): 2621-2632. doi: 10.1002/1873-3468.13881
51. Tsantes AG, Parastatidou S, Tsantes EA, Bonova E, Tsante KA, Mantzios PG, et al. Sepsis-induced coagulopathy: An update on pathophysiology, biomarkers, and current guidelines. Life (Basel). 2023; 13(2): 350. doi: 10.3390/life13020350
52. Giustozzi M, Ehrlinder H, Bongiovanni D, Borovac JA, Guerreiro RA, Gąsecka A, et al. Coagulopathy and sepsis: Pathophysiology, clinical manifestations and treatment. Blood Rev. 2021; 50: 100864. doi: 10.1016/j.blre.2021.100864
53. Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022; 387(3): 391-398. doi: 10.1007/s00441-021-03471-2
54. Chang JC. Sepsis and septic shock: Endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 2019; 17: 10. doi: 10.1186/s12959-019-0198-4
55. Cox D. Sepsis – it is all about the platelets. Front Immunol. 2023; 14: 1210219. doi: 10.3389/fimmu.2023.1210219
56. Vardon-Bounes F, Ruiz S, Gratacap MP, Garcia C, Payrastre B, Minville V. Platelets are critical key players in sepsis. Int J Mol Sci. 2019; 20(14): 3494. doi: 10.3390/ijms20143494
57. Patel P, Michael JV, Naik UP, McKenzie SE. Platelet FcγRIIA in immunity and thrombosis: Adaptive immunothrombosis. J Thromb Haemost. 2021; 19(5): 1149-1160. doi: 10.1111/jth.15265
58. Su M, Chen C, Li S, Li M, Zeng Z, Zhang Y, et al. Gasdermin d-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. Nat Cardiovasc Res. 2022; 1: 732-747. doi: 10.1038/s44161-022-00108-7
59. Su Y, Zhang T, Qiao R. Pyroptosis in platelets: Thrombocytopenia and inflammation. J Clin Lab Anal. 2023; 37: e24852. doi: 10.1002/jcla.24852
60. Serebryanaya NB, Shanin SN, Fomicheva EE, Yakutseni PP. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 2. Thrombocytes as participants of immune reactions. Medical Immunology (Russia). 2019; 21(1): 9-20. (In Russ.). doi: 10.15789/1563-0625-2019-1-9-20
61. Marín Oyarzún CP, Glembotsky AC, Goette NP, Lev PR, De Luca G, Baroni Pietto MC, et al. Platelet toll-like receptors mediate thromboinflammatory responses in patients with essential thrombocythemia. Front Immunol. 2020; 11: 705. doi: 10.3389/fimmu.2020.00705
62. Sungurlu S, Kuppy J, Balk RA. Role of antithrombin III and tissue factor pathway in the pathogenesis of sepsis. Crit Care Clin. 2020; 36(2): 255-265. doi: 10.1016/j.ccc.2019.12.002
Review
For citations:
Osikov M.V., Telesheva L.F., Konashov A.G., Gusev A.V., Konashov V.A. Modern ideas of the role of the immune process and hemostasis in the pathogenesis of sepsis. Acta Biomedica Scientifica. 2024;9(6):118-129. (In Russ.) https://doi.org/10.29413/ABS.2024-9.6.12