Population structure of the B0/W148 Mycobacterium tuberculosis subtype: Phylogenetic analysis and characteristics of genotypic drug resistance
https://doi.org/10.29413/ABS.2024-9.4.27
Abstract
Background. The B0/W148 subtype belongs to the L2phylogenetic lineage of Mycobacterium tuberculosis and is most common in the former Soviet Union. Test systems capable of detecting genetic variants of the pathogen are needed for effective epidemiological surveillance. Studying the genetic diversity of B0/W148 strains and finding molecular markers suitable for their genotyping are key steps in the development of such diagnostic tools.
The aim of the work. To study the phylogenetic diversity of the B0/W148 subtype circulating in the territory of the Russian Federation and neighboring countries in order to identify unique clades and search for specific molecular markers suitable for their precise identification.
Materials and methods. The study used DNA samples of B0/W148 strains (n = 34) isolated in different regions of the Russian Federation, as well as genomic data obtained from the SRA NCBI (Sequence Read Archive of the National Center for Biotechnology Information) (n = 419). Phylogenetic analysis and principal component analysis (PCA) of whole genome sequencing (WGS) data were used to analyze genetic diversity and to identify molecular markers. An evolutionary reconstruction of the age of the identified clades was carried out.
Results. The analysis of the B0/W148 genomes (n = 453) revealed that they are divided into three phylogenetic clades: B – basal, M – minor and P – principal. It was found that specific mutations in the M and P clades allow for their differential diagnosis. The 4137219T>G mutation is unique for the M clade, and the 2241091C>T mutation is unique for the P clade. No characteristic mutations were found among the strains of B clade. In addition, unique mutation profiles in the genes responsible for drug resistance were identified for the clades.
Conclusion. The study showed that B0/W148 strains represent a genetically heterogeneous population divided into B, M and P clades. M and P Clades have unique mutations that allow for their identification. It was also found that all clades are characterized by the presence of specific mutation profiles in drug resistance genes.
About the Authors
V. V. SinkovRussian Federation
Viacheslav V. Sinkov – Cand. Sc. (Med.), Senior Research Officer at the Institute of Epidemiology and Microbiology
Timiryazeva str. 16, Irkutsk 664003
O. V. Ogarkov
Russian Federation
Oleg B. Ogarkov – Dr. Sc. (Med.), Director of the Institute of Epidemiology and Microbiology
Timiryazeva str. 16, Irkutsk 664003
References
1. Global tuberculosis report. Geneva: World Health Organization; 2023.
2. Savilov ED, Khromova PA, Shugaeva SN, Oryshchak SE, Sinkov VV, Ogarkov OB. Analysis of long-term dynamics of morbidity by the method of complex assessment at different territorial levels. Epidemiology and Infectious Diseases. 2023; 28(6): 353-362. (In Russ.). doi: 10.17816/EID569175
3. Khromova PA, Sinkov VV, Savilov ED, Ogarkov OB. Complex analysis of the epidemiological situation of tuberculosis used as an additional tool for determining the «Risk Areas» on the Siberian Federal District. Epidemiology and Vaccinal Prevention. 2021; 20(3): 37-44. (In Russ.). doi: 10.31631/2073-30462021-20-3-37-44
4. Zhdanova S, Mokrousov I, Orlova E, Sinkov V, Ogarkov O. Transborder molecular analysis of drug-resistant tuberculosis in Mongolia and Eastern Siberia, Russia. Transbound Emerg Dis. 2022; 69(5): e1800-e1814. doi: 10.1111/tbed.14515
5. Meaza A, Tola HH, Eshetu K, Mindaye T, Medhin G, Gumi B. Tuberculosis among refugees and migrant populations: Systematic review. PLos One. 2022; 17(6): e0268696. doi: 10.1371/journal.pone.0268696
6. Savilov ED, Sinkov VV, Ogarkov OB. Beijing genotype of M. tuberculosis. Epidemiology and Infectious Diseases. 2010; (4): 50-53. (In Russ.). doi: 10.17816/EID40504
7. Savilov ED, Sinkov VV, Ogarkov OB. Epidemiology of tuberculosis on the Eurasian continent: Assessment of the global movement of strains of the Beijing genotype. Irkutsk: Irkutsk State Medical Academy of Postgraduate Education; 2013. (In Russ.).
8. Sinkov VV, Savilov ED, Ogarkov OB. Epidemiology of tuberculosis in Russia: Epidemiological and historical evidences in favor of the scenario distribution of Beijing genotype of M. tuberculosis in the XX century. Epidemiology and Vaccinal Prevention. 2010; (6): 23-28. (In Russ.).
9. Shitikov E, Bespiatykh D. A revised SNP-based barcoding scheme for typing Mycobacterium tuberculosis complex isolates. mSphere. 2023; 8(4): e00169-23. doi: 10.1128/msphere.00169-23
10. Narvskaia O, Mokrousov I, Otten T, Vishnevski B. Genetic marking of polyresistant Mycobacterium tuberculosis strains isolated in the north-west of Russia. Problemsof Tuberculosis. 1999; (3): 39-41.
11. Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015; 47(3): 242-249. doi: 10.1038/ng.3195
12. Mokrousov I. Insights into the origin, emergence, and current spread of successful Russian clone of Mycobacterium tuberculosis. Clin Microbiol Rev. 2013; 26(2): 342-360. doi: 10.1128/CMR.00087-12
13. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, et al. Evolution and transmission of drugresistant tuberculosis in a Russian population. Nat Genet. 2014; 46(3): 279-286. doi: 10.1038/ng.2878
14. Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of extensively drug-resistant tuberculosis over four decades: Whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 2015; 12(9): e1001880. doi: 10.1371/journal.pmed.1001880
15. Ribeiro SCM, Gomes LL, Amaral EP, Andrade MRM, Almeida FM, Rezende AL, et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol. 2014; 52(7): 2615-2624. doi: 10.1128/JCM.00498-14
16. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: A systematic review. Emerg Infect Dis. 2002; 8(8): 843-849. doi: 10.3201/eid0805.020002
17. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM. Mycobacterium tuberculosis Beijing genotype: A template for success. Tuberc Edinb Scotl. 2011; 91(6): 510-523. doi: 10.1016/j.tube.2011.07.005
18. Lasunskaia E, Ribeiro SCM, Manicheva O, Gomes LL, Suffys PN, Mokrousov I, et al. Emerging multidrug resistant Mycobacterium tuberculosis strains of the Beijing genotype circulating in Russia express a pattern of biological properties associated with enhanced virulence. Microbes Infect. 2010; 12(6): 467-475. doi: 10.1016/j.micinf.2010.02.008
19. Merker M, Rasigade JP, Barbier M, Cox H, Feuerriegel S, Kohl TA, et al. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun. 2022; 13(1): 5105. doi: 10.1038/s41467-022-32455-1
20. Bespyatykh J, Shitikov E, Butenko I, Altukhov I, Alexeev D, Mokrousov I, et al. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci Rep. 2016; 6(1): 28985. doi: 10.1038/srep28985
21. Shitikov E, Kolchenko S, Mokrousov I, Bespyatykh J, Ischenko D, Ilina E, et al. Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep. 2017; 7(1): 9227. doi: 10.1038/s41598017-10018-5
22. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17(1): 10-12.
23. Li H, Durbin R. Fast and accurate long-read alignment with Burrows – Wheeler transform. Bioinforma Oxf Engl. 2010; 26(5): 589-595. doi: 10.1093/bioinformatics/btp698
24. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021; 10(2): giab008. doi: 10.1093/gigascience/giab008
25. Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, et al. The 2021 WHO catalogue of complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe. 2022; 3(4): e265-e273. doi: 10.1016/S2666-5247(21)00301-3
26. Quinlan AR. BEDTools: The Swiss-army tool for genome feature analysis. Curr Protoc Bioinforma. 2014; 47: 11.12.1-11.1234. doi: 10.1002/0471250953.bi1112s47
27. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLos Comput Biol. 2019; 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
28. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016; 2(1): vew007. doi: 10.1093/ve/vew007
29. Crispell J, Balaz D, Gordon SV. HomoplasyFinder: A simple tool to identify homoplasies on a phylogeny. Microb Genomics. 2019; 5(1): e000245. doi: 10.1099/mgen.0.000245
30. Sysoev PG, Lyukina AN, Madatova MK. Evolution of anti-tuberculosis drugs. Modern Science. 2020; (5-1): 263-267. (In Russ.).
Review
For citations:
Sinkov V.V., Ogarkov O.V. Population structure of the B0/W148 Mycobacterium tuberculosis subtype: Phylogenetic analysis and characteristics of genotypic drug resistance. Acta Biomedica Scientifica. 2024;9(4):248-259. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.27