Mannans: Obtaining from the cell walls of Saccharomyces cerevisiae yeast and assessing their adjuvant properties in a subunit vaccine model
https://doi.org/10.29413/ABS.2024-9.4.24
Abstract
Background. Polysaccharides are known to possess adjuvant properties, they are biodegradable, safe, and are of low-labor production. In this regard, the development of polysaccharide-based adjuvants is an urgent task.
The aim. To develop a method for obtaining mannans from the cell walls of Saccharomyces cerevisiae yeast and to study their adjuvant properties using subunit vaccine model.
Materials and methods. The preparation of mannans was obtained from the Saccharomyces cerevisiae yeast by enzymatic and alkaline hydrolysis. Its adjuvant properties were assessed in BALB/c mice immunized with the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 (S) protein (Delta (B.1.617.2)). The titers of specific antibodies in the blood sera were determined by ELISA assays using the recombinant RBD (Wuhan-Hu-1 and Delta), and the recombinant (S) protein (Wuhan-Hu-1, Delta and Omicron) as antigens. The titers of virus-neutralizing antibodies were determined using virus-neutralization tests with the SARS-CoV-2 virus strains Wuhan – hCoV19/Australia/VIC01/2020 (Wuhan-Hu-1), Delta – hCoV-19/Russia/PSK-2804/2021 (Delta (B.1.617.2)), and Omicron 1 – hCoV-19/Russia/Moscow171619-031221/2021 (Omicron (B.1.1.529)).
Results. The developed scheme allowed for obtaining up to 200 mg of mannans from 10 g of yeast cell debris. Double, with a two-week interval, immunization with RBD (50 μg) in combination with mannans (40 μg and 10 μg) induced the production of specific antibodies in titers from 1:2477330 to 1:188360. The titer of virus-neutralizing antibodies to the Delta – hCoV-19/Russia/PSK-2804/2021 was 1:485 (40 μg of mannans per mouse).
Conclusions. We developed a scheme for obtaining a low-toxic preparation of mannans from the Saccharomyces cerevisiae yeast. The highest adjuvant activity was achieved when using mannans at the dose of 40 µg per mouse. Blood sera obtained from the immunized animals neutralized both homologous and heterologous SARS-CoV-2 strains.
About the Authors
T. I. EsinaRussian Federation
Tatiana I. Esina – Research Officer at the Laboratory of Obtaining and Analyzing Biosubstances, Department of Technology Development and Pilot Production of Biopreparations
Koltsovo 630559, Novosibirsk region
E. A. Volosnikova
Russian Federation
Ekaterina A. Volosnikova – Cand. Sc. (Biol.), Leading Research Officer, Head of the Laboratory of Obtaining and Analyzing Biosubstances
Koltsovo 630559, Novosibirsk region
D. N. Shcherbakov
Russian Federation
Dmitry N. Shcherbakov – Cand. Sc. (Biol.), Leading Research Officer, Head of the Laboratory of Immunochemistry
Koltsovo 630559, Novosibirsk region
N. V. Volkova
Russian Federation
Natalia V. Volkova – Cand. Sc. (Biol.), Research Officer at the Laboratory of Immunochemistry
Koltsovo 630559, Novosibirsk region
A. V. Zaykovskaya
Russian Federation
Anna V. Zaykovskaya – Cand. Sc. (Biol.), Senior Research Officer at the Department "Collection of Microorganisms"
Koltsovo 630559, Novosibirsk region
G. G. Shimina
Russian Federation
Galina G. Shimina – Research Officer at the Biological Testing Department
Koltsovo 630559, Novosibirsk region
E. D. Danilenko
Russian Federation
Elena D. Danilenko– Cand. Sc. (Biol.), Director of the Institute of Medical Biotechnology
Koltsovo 630559, Novosibirsk region
References
1. Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2020; 11: 585354. doi: 10.3389/fimmu.2020.585354
2. Alpatova NA, Avdeeva ZhI, Lysikova SL, Golovinskaya OV, Gayderova LA. General characteristics of adjuvants and their mechanism of action (part 1). BIOpreparations. Prevention, Diagnosis, Treatment. 2020; 20(4): 245-256. (In Russ.). doi: 10.30895/2221-996X-2020-20-4245-256
3. [Alpatova NА, Avdeeva ZhI, Lysikova SL, Golovinskaya OV, Gayderova LA, Bondarev VP. General characteristics of adjuvants and their mechanisms of action (part 2). BIOpreparations. Prevention, Diagnosis, Treatment. 2021; 21(1): 20-30. (In Russ.). doi: 10.30895/2221-996X2021-21-1-20-30
4. Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021; 61(3): 180-202. doi: 10.1002/jobm.202000537
5. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 proteins. JMol Biol. 2021; 433(2): 166725. doi: 10.1016/j.jmb.2020.11.024
6. Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020; 586(7830): 572-577. doi: 10.1038/s41586-020-2599-8
7. Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park Y, et al. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun. 2020; 11(1): 6121. doi: 10.1038/s41467-020-19819-1
8. Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBDbased vaccines targeting COVID-19. NPJ Vaccines. 2021; 6(1): 128. doi: 10.1038/s41541-021-00393-6
9. He Y, Yu W, Shen L, Yan W, Xiao L, Qi J, et al. A SARS-CoV-2 vaccine based on conjugation of SARS-CoV-2 RBD with IC28 peptide and mannan. Int J Biol Macromol. 2022; 222(Pt A): 661-670. doi: 10.1016/j.ijbiomac.2022.09.180
10. Alving CR, Matyas GR, Torres O, Jalah R, Beck Z. Adjuvants for vaccines to drugs of abuse and addiction. Vaccine. 2014; 32(42): 5382-5389. doi: 10.1016/j.vaccine.2014.07.085
11. Danielsson R, Eriksson H. Aluminium adjuvants in vaccines – A way to modulate the immune response. Semin Cell Dev Biol. 2021; 115: 3-9. doi: 10.1016/j.semcdb.2020.12.008
12. Laera D, HogenEsch H, O’Hagan DT. Aluminum adjuvants – ‘Back to the future’. Pharmaceutics. 2023; 15(7): 1884. doi: 10.3390/ pharmaceutics15071884
13. Facciolà A, Visalli G, Laganà A, Di Pietro A. An overview of vaccine adjuvants: Current evidence and future perspectives. Vaccines. 2022; 10(5): 819. doi: 10.3390/vaccines10050819
14. Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in infectious disease vaccine adjuvants. Vaccines. 2022; 10(7): 1120. doi: 10.3390/vaccines10071120
15. Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate immune adjuvants in subunit vaccines. Pharmaceutics. 2020; 12(10): 965. doi: 10.3390/pharmaceutics12100965
16. Yu W, Shen L, Qi J, Hu T. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Eur J Pharm Biopharm. 2022; 172: 193-202. doi: 10.1016/j.ejpb.2022.02.011
17. Xu Y, Ma S, Zhao J, Chen H, Si X, Huang Z, et al. Mannandecorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials. 2022; 284: 121489. doi: 10.1016/j.biomaterials.2022.121489
18. Stambas J, Pietersz G, McKenzie I, Cheers C. Oxidised mannan as a novel adjuvant inducing mucosal IgA production. Vaccine. 2002; 20(7-8): 1068-1078. doi: 10.1016/S0264-410X(01)00456-X
19. Dyakon AV, Khrykina IS, Khegai AA, Dyachenko IA, Murashev AN, Ivashev MN. Method of blood sampling in animals. International Journal of Applied and Fundamental Research. 2013; 11(2): 84-85. (In Russ.).
20. [Prozorovsky VB, Prozorovskaya MP, Demchenko VM. A rapid method for determining the median effective dose and its errors. Farmakologiya I toksikologiya. 1978; 41(4): 497-502. (In Russ.)
21. Evaluation of the toxicity and hazards of disinfectants: Guidelines MU 1.2.1105-02. Moscow; 2002. (In Russ.).
22. Izmerov NF, Sanotskii IV, Sidorov KK. Parameters of toxicometry of industrial poisons with a single exposure: Reference book. Moscow: Meditsina; 1977. (In Russ.).
23. Isaenko YeYu, Babych YeM, Yelyseyeva IV, Zhdamarova LA, Belozersky VI, Kolpak SA. Adjuvants in modern vaccinology. Annals of Mechnikov Institute. 2013; (4): 5-21. (In Russ.).
24. Stambas J, Pietersz G, McKenzie I, Cheers C. Oxidised mannan as a novel adjuvant inducing mucosal IgA production. Vaccine. 2002; 20(7-8): 1068-1078. doi: 10.1016/s0264410x(01)00456-x
25. Faustino M, Durão J, Pereira CF, Pintado ME, Carvalho AP. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae – A sustainable source of functional ingredients. Carbohydr Polym. 2021; 272: 118467. doi: 10.1016/j.carbpol.2021.118467
26. Huang GL. Extraction of two active polysaccharides from the yeast cell wall. Z Naturforsch C J Biosci. 2008; 63(11-12): 919-921. doi: 10.1515/znc-2008-11-1224
27. François JM. A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc. 2006; 1(6): 2995-3000. doi: 10.1038/nprot.2006.457
28. Schiavone M, Vax A, Formosa C, Martin-Yken H, Dague E, François JM. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res. 2014; 14(6): 933-947. doi: 10.1111/15671364.12182
29. Li J, Karboune S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. Int J Biol Macromol. 2018; 119: 654-661. doi: 10.1016/j.ijbiomac.2018.07.102
Review
For citations:
Esina T.I., Volosnikova E.A., Shcherbakov D.N., Volkova N.V., Zaykovskaya A.V., Shimina G.G., Danilenko E.D. Mannans: Obtaining from the cell walls of Saccharomyces cerevisiae yeast and assessing their adjuvant properties in a subunit vaccine model. Acta Biomedica Scientifica. 2024;9(4):221-229. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.24