Preview

Acta Biomedica Scientifica

Advanced search

Cardiopulmonary exercise test in medical and biological practice (literature review)

https://doi.org/10.29413/ABS.2024-9.4.5

Abstract

Most tests assess physiology at rest, whereas many symptoms occur with physical exertion, and physical activity is an integral part of healthy functioning and quality of life of a person. Today, cardiopulmonary exercise testing is considered the standard for identifying exercise limitations and differentiating their causes.

Cardiopulmonary exercise testing is widely used in both basic and the latest research from cardiology and pulmonology to neurology and hematology and has great prognostic value. Cardiopulmonary exercise testing is considered the gold standard for non-invasive assessment of the cardiopulmonary system and physical performance. This study has become even more relevant and in demand due to the COVID-19 outbreak; now it plays an important role in the clinical assessment of recovering patients who have had COVID-19.

Numerous indicators recorded at each stage of the study, taken together, allow us to obtain a complete picture of the work of the cardiovascular, respiratory and muscular systems, as well as to study the characteristics of the metabolic response to stress.

This article contains a review of the literature on the history of the application and development of the cardiopulmonary exercise testing, its physiological characteristics and a study of the literature concerning application of studied method in medicine over the past 5 years. The search and analysis of articles were carried out using the scientometric databases PubMed, ScienceDirect, Google Academia.

The presented article may be useful for young specialists working in functional diagnostics, cardiology and pulmonology, as well as for researchers and postgraduates whose work involves application of the cardiopulmonary exercise testing method.

About the Authors

A. B. Kiryanov
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

Artyom B. Kiryanov – Teaching Assistant at the Department of Human Biology and Biotechnical Systems

Severnoy Dviny embankment 17, Arkhangelsk 163000



I. S. Kozhevnikova
Northern (Arctic) Federal University named after M.V. Lomonosov; Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences; Northern State Medical University
Russian Federation

Irina S. Kozhevnikova – Cand. Sc. (Biol.), Associate Professor at the Department of Human Biology and Biotechnical Systems, Northern (Arctic) Federal University named after M.V. Lomonosov; Senior Research Officer, Head of the Laboratory of Innovative Technologies, N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences; Associate Professor at the Department of Hygiene and Medical Ecology, Northern State Medical University 

Severnoy Dviny embankment 17, Arkhangelsk 163000; 
Nikolsky Ave. 20, Arkhangelsk 163020; 
Troitsky Ave. 51, Arkhangelsk 163069

 

 



A. A. Farkova
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

Anna A. Farkova – Teaching Assistant at the Department of Human Biology and Biotechnical Systems

Severnoy Dviny embankment 17, Arkhangelsk 163000



N. Yu. Anikina
Northern State Medical University
Russian Federation

Natalya Yu. Anikina – Cand. Sc. (Biol.), Associate Professor at the Department of Medical and Biological Physics

Troitsky Ave. 51, Arkhangelsk 163069



E. V. Yurieva
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

Elizaveta V. Yuryeva – Student at the Department of Human Biology and Biotechnical Systems

Severnoy Dviny embankment 17, Arkhangelsk 163000



A. I. Amelina
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

Arina I. Amelina – Student at the Department of Human Biology and Biotechnical Systems

Severnoy Dviny embankment 17, Arkhangelsk 163000



References

1. Derek T. Cardiopulmonary exercise testing. Methods Mol Biol. 2018; 1735: 285-295. doi: 10.1007/978-1-4939-7614-0_18

2. Umapathi KK, Nguyen H. Cardiopulmonary fi . StatPearls Publishing; 2024.

3. Andonian BJ, Hardy N, Bendelac A, Polys N, Kraus WE. Making cardiopulmonary exercise testing interpretable for clinicians. Curr Sports Med Rep. 2021; 20(10): 545-552. doi: 10.1249/ JSR.0000000000000895

4. Triantafyllidi H, Birmpa D, Benas D, Trivilou P, Fambri A, Iliodromitis EK. Cardiopulmonary exercise testing: The ABC for the clinical cardiologist. Cardiology. 2022; 147(1): 62-71. doi: 10.1159/000520024

5. Krasichkov AS, Mbazumutima E, Shikama F, Nifontov EM. A method for predicting the main indicators of cardiopulmonary stress testing for patients with chronic heart failure. Journal of the Russian Universities. Radioelectronics. 2020; 23(1): 96-104. (In Russ.). doi: 10.32603/1993-8985-2020-23-1-96-104

6. Pritchard A, Burns P, Correia J, Jamieson P, Moxon P, Purvis J, et al. ARTP statement on cardiopulmonary exercise testing 2021. BMJ Open Respir Res. 2021; 8(1): e001121. doi: 10.1136/bmjresp-2021-001121

7. Smith EJ, Gartman EJ. The clinical utility of cardiopulmonary exercise testing. Rhode Island Med J. 2021; 104(7): 14-19.

8. Glaab T, Schmidt O, Fritsch J. Spiroergometrie kompakt – Physiologie, Durchführung und Auswertung. Pneumologie. 2020; 74(02): 88-102. doi: 10.1055/a-1069-0611

9. Semper H, Kühnelt P, Seipp P. Spiroergometrie – Schritt für Schritt. Dtsch Med Wochenschr. 2019; 144: 39-45. doi: 10.1055/a-0600-9233

10. Chaumont M, Forton K, Gillet A, Tcheutchoua Nzokou D, Lamotte M. How does the method used to measure the VE/VCO2 slope affect its value? A cross-sectional and retrospective cohort study. Healthcare (Basel). 2023; 11(9): 1292. doi: 10.3390/healthcare11091292

11. Pella E, Boutou A, Boulmpou A, Papadopoulos CE, Papagianni A, Sarafidis P. Cardiopulmonary exercise testing in patients with end-stage kidney disease: Principles, methodology and clinical applications of the optimal tool for exercise tolerance evaluation. Nephrol Dial Transplant. 2022; 37(12): 2335-2350. doi: 10.1093/ndt/gfab150

12. Pella E, Boutou A, Theodorakopoulou MP, Sarafi P. Assessment of exercise intolerance in patients with predialysis CKD with cardiopulmonary function testing: Translation to everyday practice. Am J Nephrol. 2021; 52(4): 264-278. doi: 10.1159/000515384

13. Santoro C, Sorrentino R, Esposito R, Lembo M, Capone V, Rozza F, et al. Cardiopulmonary exercise testing and echocardiographic exam: An useful interaction. Cardiovasc Ultrasound. 2019; 17(1): 29. doi: 10.1186/s12947-019-0180-0

14. Berton DC, Mendes NBS, Olivo-Neto P, Benedetto IG, Gazzana MB. Pulmonology approach in the investigation of chronic unexplained dyspnea. J Bras Pneumol. 2021; 47(1): e20200406. doi: 10.36416/1806-3756/e20200406

15. Louvaris Z, Langer D, Gosselink R. Detailing the mechanisms of chronic dyspnea in patients during cardiopulmonary exercise testing. J Bras Pneumol. 2021; 47(1): e20210014. doi: 10.36416/1806-3756/e20210014

16. Neder JA, Berton DC, Nery LE, Tan WC, Bourbeau J, O’Donnell DE; Canadian Cohort of Obstructive Lung Disease (CanCOLD) Collaborative Research Group and the Canadian Respiratory Research Network (CRRN). A frame of reference for assessing the intensity of exertional dyspnoea during incremental cycle ergometry. Eur Respir J. 2020; 56(4): 2000191. doi: 10.1183/13993003.001912020

17. Weatherald J, Boucly A, Montani D, Jaïs X, Savale L, Humbert M, et al. Gas exchange and ventilatory efficiency during exercise in pulmonary vascular diseases. Arch Bronconeumol (Engl Ed). 2020; 56(9): 578-585. doi: 10.1016/j.arbres.2019.12.030

18. Sherman AE, Saggar R Cardiopulmonary exercise testing in pulmonary arterial hypertension. Heart Failure Clinics. 2023; 19(1): 35-43. doi: 10.1016/j.hfc.2022.08.015

19. Ho JE, Zern EK, Lau ES, Wooster L, Bailey CS, Cunningham T, et al. Exercise pulmonary hypertension predicts clinical outcomes in patients with dyspnea on effort. J Am Coll Cardiol. 2020; 75(1): 17-26. doi: 10.1016/j.jacc.2019.10.048

20. Fernandes TM, Alotaibi M, Strozza DM, Stringer WW, Porszasz J, Faulkner GG, et al. Dyspnea postpulmonary embolism from physiological dead space proportion and stroke volume defects during exercise. Chest. 2020; 157(4): 936-944. doi: 10.1016/j.chest.2019.10.047

21. van Kan C, Tramper J, Bresser P, J Meijboom L, Symersky P, Winkelman JA, et al. Patients with CTEPH and mild hemodynamic severity of disease improve to a similar level of exercise capacity after pulmonary endarterectomy compared to patients with severe hemodynamic disease. Pulm Circ. 2024; 14(1): e12316. doi: 10.1002/pul2.12316

22. Ruigrok D, Meijboom LJ, Nossent EJ, Boonstra A, Braams NJ, van Wezenbeek J, et al. Persistent exercise intolerance after pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2020; 55(6): 2000109. doi: 10.1183/13993003.00109-2020

23. McGuire WC, Alotaibi M, Morris TA, Kim NH, Fernandes TM. Chronic thromboembolic disease: Epidemiology, assessment with invasive cardiopulmonary exercise testing, and options for management. Structural Heart. 2021; 5(2): 120-127. doi: 10.1080/24748706.2020.1861397

24. Boutou AK, Zafeiridis A, Pitsiou G, Dipla K, Kioumis I, Stanopoulos I. Cardiopulmonary exercise testing in chronic obstructive pulmonary disease: An update on its clinical value and applications. Clin Physiol Funct Imaging. 2020; 40(4): 197-206. doi: 10.1111/cpf.12627

25. Mandal S, Barnett J, Brill SE, Brown JS, Denneny EK, Hare SS, et al.; ARC Study Group. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021; 76(4): 396-398. doi: 10.1136/thoraxjnl-2020-215818

26. Mihalick VL, Canada JM, Arena R, Abbate A, Kirkman DL. Cardiopulmonary exercise testing during the COVID-19 pandemic. Prog Cardiovasc Dis. 2021; 67: 35-39. doi: 10.1016/j.pcad.2021.04.005

27. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021; 9(2): 129. doi: 10.1016/S2213-2600(21)00031-X

28. Clavario P, De Marzo V, Lotti R, Barbara C, Porcile A, Russo C, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021; 340: 113-118. doi: 10.1016/j.ijcard.2021.07.033

29. Dorelli G, Braggio M, Gabbiani D, Busti F, Caminati M, Senna G, et al., on behalf of the Respicovid Study Investigators. Importance of cardiopulmonary exercise testing amongst subjects recovering from COVID-19. Diagnostics (Basel). 2021; 11(3): 507. doi: 10.3390/diagnostics11030507

30. Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M, et al. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest. 2022; 161(1): 54-63. doi: 10.1016/j.chest.2021.08.010

31. Barbagelata L, Masson W, Iglesias D, Lillo E, Migone JF, Orazi ML, et al. Cardiopulmonary exercise testing in patients with post-COVID-19 syndrome. Med Clin (Barc). 2022; 159(1): 6-11. doi: 10.1016/j.medcli.2021.07.007

32. Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020; 25: 100463. doi: 10.1016/j.eclinm.2020.100463

33. Mancini DM, Brunjes DL, Lala A, Trivieri MG, Contreras JP, Natelson BH. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease. JACC Heart Fail. 2021; 9(12): 927-937. doi: 10.1016/j.jchf.2021.10.002

34. Boutou AK, Daniil Z, Pitsiou G, Papakosta D, Kioumis I, Stanopoulos I. Cardiopulmonary exercise testing in patients with asthma: What is its clinical value? Respir Med. 2020; 167: 105953. doi: 10.1016/j.rmed.2020.105953

35. Vecchiato M, Neunhaeuserer D, Quinto G, Bettini S, Gasperetti A, Battista F, et al. Cardiopulmonary exercise testing in patients with moderate-severe obesity: A clinical evaluation tool for OSA? Sleep Breath. 2022; 26(3): 1115-1123. doi: 10.1007/s11325-021-02475-0

36. Trotsyuk DV, Medvedev DS, Chickov AЕ, Zaripova ZA, Makarenko SV. Cardiopulmonary exercise testing for the assessment functional state and prediction surgical treatment outcome in older patients. Clinical Gerontology. 2021; 27(3-4): 82-89. (In Russ.). doi: 10.26347/1607-249920210304082-089

37. Constantine A, Barradas-Pires A, Dimopoulos K. Cardiopulmonary exercise testing in congenital heart disease: Towards serial testing as part of long-term follow-up. Eur J Prev Cardiol. 2022; 29(3): 510-512. doi: 10.1093/eurjpc/zwab144

38. Powell AW, Alsaied T, Niss O, Fleck RJ, Malik P, Quinn CT, et al. Abnormal submaximal cardiopulmonary exercise parameters predict impaired peak exercise performance in sickle cell anemia patients. Pediatr Blood Cancer. 2019; 66(6): e27703. doi: 10.1002/pbc.27703

39. Wu X, Zhang Y, Wang F, Xiang J. Cardiopulmonary exercise testing to observe subclinical abnormalities in cardiopulmonary function in patients undergoing peritoneal dialysis. Clin Physiol Funct Imaging. 2022; 42(4): 269-277. doi: 10.1111/cpf.12756

40. Kiani A, Eslaminejad A, Shafeipour M, Razavi F, Seyyedi SR, Sharif-Kashani B, et al. Spirometry, cardiopulmonary exercise testing and the six-minute walk test results in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 2019; 36(3): 185-194. doi: 10.36141/svdld.v36i3.7663

41. Wowdzia JB, Davenport MH. Cardiopulmonary exercise testing during pregnancy. Birth Defects Research. 2020; 113(3): 248-264. doi: 10.1002/bdr2.1796

42. Roxburgh BH, Campbell HA, Cotter JD, Reymann U, Williams MJA, Gwynne-Jones D, et al. Cardiopulmonary exercise testing in severe osteoarthritis: A crossover comparison of four exercise modalities. Anaesthesia. 2021; 76(1): 72-81. doi: 10.1111/anae.15162

43. Sheill G, Reynolds S, O’Neill L, Mockler D, Reynolds JV, Hussey J, et al. Cardiopulmonary exercise testing in oesophagogastric surgery: A systematic review. J Gastrointest Surg. 2020; 24(11): 2667-2678. doi: 10.1007/s11605-020-04696-2

44. Yamashita M, Kawai K, Toda K, Aso C, Suematsu T, Yokoyama H, et al. Cardiopulmonary exercise testing for patients with anorexia nervosa: A case-control study. Eat Weight Disord. 2022; 27(8): 3553-3560. doi: 10.1007/s40519-022-01492-6

45. Kanegusuku H, Peçanha T, Silva-Batista C, Miyasato RS, Silva Júnior NDD, Mello MT, et al. Effects of resistance training on metabolic and cardiovascular responses to a maximal cardiopulmonary exercise test in Parkinson’s disease. Einstein (Sao Paulo). 2021; 19: eAO5940. doi: 10.31744/einstein_journal/2021AO5940


Review

For citations:


Kiryanov A.B., Kozhevnikova I.S., Farkova A.A., Anikina N.Yu., Yurieva E.V., Amelina A.I. Cardiopulmonary exercise test in medical and biological practice (literature review). Acta Biomedica Scientifica. 2024;9(4):35-48. (In Russ.) https://doi.org/10.29413/ABS.2024-9.4.5

Views: 1015


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)