Preview

Acta Biomedica Scientifica

Advanced search

Metabolic changes in the eye lens in the progression of cataract

https://doi.org/10.29413/ABS.2024-9.3.17

Abstract

Background. Cataract is one of the main causes of decreased visual acuity in the world, and therefore scientists are continuing researches on the mechanisms of development of this ophthalmic pathology.
The aim. To study metabolic changes in a cloudy lens using an experimental model.
Materials and methods. The study was carried out on adult male Wistar rats (n = 60), which were divided into control (n = 30) and experimental (n = 30) groups. Experimental cataract were simulated by daily ultraviolet irradiation (λ = 300–350 nm) during 6 months for 20 minutes. At the months 2, 4 and 6 of the study, we carried out a biomicroscopic examination of the anterior eye of animals using a slit lamp to monitor the development of cataract. Lenses were collected to determine the content of stearoyl-coenzyme-A desaturases and melatonin using enzyme immunoassay.
Results. At the stage of initial cataract, the content of the stearoyl-coenzyme A desaturase was statistically significantly lower than the control values by 38 %; at the stage of immature cataract – by 30 %; at the stage of mature cataract – by 15.4 %. It was revealed that at the month 6 of the study, the concentration of melatonin in lens homogenates was 17 % lower when compared with the control. A statistically significant correlation was established between stearoyl-coenzyme A desaturase and melatonin (r = 0.32).
Conclusion. Melatonin and stearoyl-coenzyme A desaturase play an important role in a number of biochemical processes that ensure the proper functioning of the visual analyzer. Changes in the concentration of these biological molecules can play a key role in the pathogenesis of cataract and a number of other ophthalmic diseases

About the Authors

A. D. Chuprov
Orenburg branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Orenburg State University
Russian Federation

Aleksandr D. Chuprov – Dr. Sc. (Med.), Professor, Director; Head of the Department of Biomedical Engineering

460047, Salmyshskaya str. 17, Orenburg

Pobedy ave. 13, Orenburg 460018



S. V. Notova
Orenburg branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Svetlana V. Notova – Dr. Sc. (Med.), Professor, Professor at the Department of Biochemistry and Microbiology

460047, Salmyshskaya str. 17, Orenburg



O. V. Marshinskaia
Orenburg branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Olga V. Marshinskaia – Senior Research Officer

460047, Salmyshskaya str. 17, Orenburg



T. V. Kazakova
Orenburg branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Tatiana V. Kazakova – Senior Research Officer

460047, Salmyshskaya str. 17, Orenburg



References

1. Koroleva IA, Egorov EA. Age-related cataract: Prevention and treatment. RMJ “Clinical ophthalmology”. 2018; 4: 194-198. (In Russ.) doi: 10.21689/2311-7729-2018-18-4-194-198

2. Egorov VV, Sorokin EL, Smolyakova GP, Kolenko OV. Cataract. Diagnostic errors when referring patients for surgical treatment. Khabarovsk: Institute for Advanced Training of Healthcare Specialists; 2020. (In Russ.)

3. Bragin EV. Risk factors which cause senile cataract evolvement: Outline. Health Risk Analysis. 2018; 1: 113-125. (In Russ.) doi: 10.21668/health.risk/2018.1.13

4. Giblin FJ, Lin LR, Leverenz VR, Dang L. A class I (Senofilcon A) soft contact lens prevents UVB-induced ocular effects, including cataract, in the rabbit in vivo. Invest Ophthalmol Vis Sci. 2011; 52(6): 3667-3675. doi: 10.1167/iovs.10-6885

5. Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res. 2021; 62: 100039. doi: 10.1194/jlr

6. Chuprov AD, Kim SM, Kazakova TV. Δ9-desaturases in the regulation of metabolic processes. Medicine. 2021; 19(2): 1-17. (In Russ.) doi: 10.29234/2308-9113-2021-9-2-1-17

7. Inaba T, Tanaka Y, Tamaki S, Ito T, Ntambi JM, Tsubota K. Compensatory increases in tear volume and mucin levels associated with meibomian gland dysfunction caused by stearoyl-CoA desaturase-1 deficiency. Sci Rep. 2018; 8(1): 3358. doi: 10.1038/s41598-018-21542-3

8. Iida T, Ubukata M, Mitani I, Nakagawa Y, Maeda K, Imai H, et al. Discovery of potent liver-selective stearoyl-CoA desaturase-1 (SCD1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity. Eur J Med Chem. 2018; 158: 832-852. doi: 10.1016/j.ejmech.2018.09.003

9. Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019; 102(2): 99-108. doi: 10.1111/cxo.12824

10. Blasiak J, Reiter RJ, Kaarniranta K. Melatonin in retinal physiology and pathology: The case of age-related macular degeneration. Oxid Med Cell Longev. 2016; 2016: 6819736. doi: 10.1155/2016/6819736

11. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, et al. Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol Life Sci. 2014; 71(16): 2997-3025. doi: 10.1007/s00018-014-1579-2

12. Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and hippo pathway: Is there existing cross-talk? Int J Mol Sci. 2017; 18(9): 1913. doi: 10.3390/ijms18091913

13. Blasiak J, Reiter RJ, Kaarniranta K. Melatonin in retinal physiology and pathology: The case of age-related macular degeneration. Oxid Med Cell Longev. 2016; 2016: 6819736. doi: 10.1155/2016/6819736

14. Krivoschekov SG, Leutin VP, Divert VE, Divert GM, Platonov YaG, Kovtun LT, et al. System mechanisms of adaptation and compensation. Siberian Scientific Medical Journal. 2004; 2(212): 148-153. (In Russ.)

15. Травень В.Ф. Органическая химия. М.: ИКЦ «Академкнига»; 2004. Traven VF. Organic chemistry. Moscow: Akademkniga; 2004. (In Russ.)

16. Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res. 2021; 62: 100039. doi: 10.1194/jlr.TR120000874

17. Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res. 2010; 51(9): 2473-2488. doi: 10.1194/jlr.R004119

18. Miroshnichenko IV, Treushnikov VM, Chuprov AD. Processes in crystalline lens and mechanisms of their functioning, preventing cataract progression. Medicine. 2019; 3: 1-36. (In Russ.) doi: 10.29234/2308-9113-2019-7-3-1-36

19. Chuprov AD, Treushnikov VM, Notova SV, Kim SM, Marshinskaia OV, Kazakova ТV. The level of stearoyl-CoA-desaturase in the lenses of rat eyes in cataract progression. Problems of biological, medical and pharmaceutical chemistry. 2020; 23(8): 48-51. (In Russ.) doi: 10.29296/25877313-2020-08-07

20. Yabunaka A, Miyawaki I, Toyosawa K, Kunimatsu T, Kimura J, Funabashi H. Involvement of stearoyl-CoA desaturase in cataractogenesis – phenotypic analysis using SCD1-null mice. J Toxicol Sci. 2012; 38(2): 470. doi: 10.14869/toxpt.39.2.0.AP-204.0

21. Kudryavtseva YuV, Chuprov AD, Ivanova IP. Relationship between lipids and lens proteins. Bulletin Orenburg State University. 2010; 12: 120-123. (In Russ.)

22. Tsenteradze SL, Poluektov MG. Therapeutic aspects of melatonin applications. Medical Council. 2021; (10): 80-84. (In Russ.) doi: 10.21518/2079-701X-2021-10-80-84

23. Kiliç A, Selek S, Erel O, Aksoy N. Protective effects of melatonin on oxidative-antioxidative balance and cataract formation in rats. Ann Ophthalmol (Skokie). 2008; 40(1): 22-27.

24. Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res. 2013; 32: 64-87. doi: 10.1016/j.preteyeres. 2012.07.003

25. Arushanyan EB, Ovanesov KB. The role of melatonin for physiology and pathology of an eye. Medical news of the North Caucasus. 2016; 11(1): 126-133. (In Russ.) doi: 10.14300/mnnc.2016.11017

26. Bardak Y, Ozertürk Y, Ozgüner F, Durmuş M, Delibaş N. Effect of melatonin against oxidative stress in ultraviolet-B exposed rat lens. Curr Eye Res. 2000; 20(3): 225-230.

27. Kaladze NN, Soboleva YeM, Skoromnaya NN. Results and perspectives of study of physiological, pathogenetic and pharmacological effects of melatonin. Child’s Health. 2010; 2(23): 156-166. (In Russ.)

28. Horrobin DF. Loss of delta-6-desaturase activity as a key factor in aging. Med Hypotheses. 1981; 7(9): 1211-1220. doi: 10.1016/0306-9877(81)90064-5

29. Nishida S, Segawa T, Murai I, Nakagawa S. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J Pineal Res. 2002; 32(1): 26-33. doi: 10.1034/j.1600-079x.2002.10797.x

30. Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fatty Acids. 2005; 72(5): 343-350. doi: 1016/j.plefa.2005


Review

For citations:


Chuprov A.D., Notova S.V., Marshinskaia O.V., Kazakova T.V. Metabolic changes in the eye lens in the progression of cataract. Acta Biomedica Scientifica. 2024;9(3):171-178. (In Russ.) https://doi.org/10.29413/ABS.2024-9.3.17

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)