Preview

Acta Biomedica Scientifica

Advanced search

Menopausal women with moderate and asymptomatic COVID-19: antioxidant defense system biomarkers

https://doi.org/10.29413/ABS.2024-9.2.11

Abstract

The aim. The research was conducted to assess the total antioxidant and glutathione status, superoxide dismutase activity in menopausal women with moderate and asymptomatic COVID-19.

Materials and methods. Ninety two women 45 to 69 years old were divided into groups: women without COVID-19, not vaccinated, with no antibodies to SARS-CoV-2 (IgG) – control; women with moderate COVID-19 – main group; women with anti-SARS-CoV-2 IgG in blood but who deny any symptoms of COVID-19 in the last 12 months – asymptomatic COVID-19.

Results. A lower glutathione peroxidase (GPx), superoxide dismutase (SOD) activities and a higher glutathione reductase (GR) activity, glutathione S-transferase pi (GSTpi) concentrations were detected in the patients with moderate COVID-19 as compared to control. There were statistically lower oxidized glutathione (GSSG) levels, total antioxidant status (TAS) and higher reduced glutathione (GSH) levels, as well as GSH/GSSG ratio in the group with asymptomatic COVID-19 as compared to control. Significantly a lower GPx, SOD activities and a higher TAS, GR activity, GSTpi concentrations were detected in the patients with symptomatic COVID-19 as compared to group without clinical symptoms. ROC analysis shows the diagnostic significance of TAS (AUC = 0.714; p = 0.048), GSH (AUC = 0.714; p = 0.030), GSSG (AUC = 0.712; p = 0.031), GSH/GSSG (AUC = 0.837; p < 0.001) for group with asymptomatic COVID-19 compared with controls; TAS (AUC = 0.709; p = 0.020), SOD (AUC = 0.760; p < 0.001), GSH/GSSG (AUC = 0.658; p = 0.039), GPx (AUC = 0.774; p < 0.001), GSTpi (AUC = 0.864; p < 0.001) and GR (AUC = 0.871; p < 0.001) for group with moderate COVID-19 compared asympotmatic COVID-19.

Conclusions. Antioxidant defense system activity in menopausal women depends on the COVID-19 course.

About the Authors

N. V. Semenova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Natalya V. Semenova – Dr. Sc. (Biol.), Leading Research Officer at the Laboratory of Pathophysiology.

Timiryazeva str. 16, Irkutsk 664003



E. V. Vyrupaeva
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Ekaterina V. Vyrupaeva – Postgraduate.

Timiryazeva str. 16, Irkutsk 664003



S. I. Kolesnikov
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Sergey I. Kolesnikov – Dr. Sc. (Med.), Member of RAS, Chief Scientific Officer.

Timiryazeva str. 16, Irkutsk 664003



M. A. Darenskaya
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Marina A. Darenskaya – Dr. Sc. (Biol.), Leading Research Officer at the Laboratory of Pathophysiology.

Timiryazeva str. 16, Irkutsk 664003



E. A. Novikova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Elizaveta A. Novikova – Clinical Research Assistant at the Laboratory of Biomedical Microecology.

Timiryazeva str. 16, Irkutsk 664003



A. G. Petrova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Alla G. Petrova – Dr. Sc. (Med.), Professor, Head of the Laboratory of Infectology and Immunoprophylaxis in Pediatrics.

Timiryazeva str. 16, Irkutsk 664003



E. A. Orlova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Elizaveta A. Orlova – Junior Research Officer at the Institute of Epidemiology and Microbiology.

Timiryazeva str. 16, Irkutsk 664003



L. I. Kolesnikova
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Lyubov I. Kolesnikova – Dr. Sc. (Med.), Professor, Member of RAS, Scientific Advisor.

Timiryazeva str. 16, Irkutsk 664003



References

1. Prinelli F, Trevisan C, Noale M, Franchini M, Giacomelli A, Cori L, et al. Sexand gender-related differences linked to SARSCoV-2 infection among the participants in the web-based EPICOVID19 survey: The hormonal hypothesis. Maturitas. 2022; 158: 61-69. doi: 10.1016/j.maturitas.2021.11.015

2. Vyrupaeva EV, Semenova NV, Rychkova LV, Petrova AG, Darenskaya MA, Kolesnikov SI, et al. Assessment of the general condition and quality of life of women of post-reproductive age after asymptomatic COVID-19 and 12 months after moderate COVID-19. Acta biomedica scientifica. 2022; 7(5-1): 77-85. (In Russ.). doi: 10.29413/ABS.2022-7.5-1.9

3. Semenova NV, Kolesnikov SI, Vyrupaeva EV, Sholokhov LF, Rychkova LV, Petrova АG, et al. Thyroid status and TNF-alpha in post-reproductive women with COVID-19 and 12 months after the disease. Acta biomedica scientifica. 2023; 8(2): 33-42. (In Russ.). doi: 10.29413/ABS.2023-8.2.4

4. Gadotti AC, Lipinski AL, Vasconcellos FT, Marqueze LF, Cunha EB, Campos AC, et al. Susceptibility of the patients infected with Sars-Cov2 to oxidative stress and possible interplay with severity of the disease. Free Radic. Biol. Med. 2021; 165: 184-190. doi: 10.1016/j.freeradbiomed.2021.01.044

5. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021; 42: 100897. doi: 10.1016/j.nmni.2021.100897

6. Martín-Fernández M, Aller R, Heredia-Rodríguez M, GómezSánchez E, Martínez-Paz P, Gonzalo-Benito H, et al. Lipid peroxidation as a hallmark of severity in COVID-19 patients. Redox Biol. 2021; 6(48): 102181. doi: 10.1016/j.redox.2021.102181

7. Pincemail J, Cavalier E, Charlier C, Cheramy-Bien JP, Brevers E, Courtois A, et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxidants (Basel). 2021; 10: 257. doi: 10.3390/antiox10020257

8. Lage SL, Amaral EP, Hilligan KL, Laidlaw E, Rupert A, Namasivayan S, et al. Persistent oxidative stress and inflammasome activation in CD14highCD16– monocytes from COVID-19 patients. Front Immunol. 2022; 12: 799558. doi: 10.3389/fimmu.2021.799558

9. Horváth-Szalai Z, Jakabfi-Csepregi R, Szirmay B, Ragán D, Simon G, Kovács-Ábrahám Z, et al. Serum total antioxidant capacity (TAC) and TAC/Lymphocyte ratio as promising predictive markers in COVID-19. Int J Mol Sci. 2023; 24: 12935. doi: 10.3390/ijms241612935

10. Circu M, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 2012; 1823(10): 1767-1777. doi: 10.1016/j.bbamcr.2012.06.019

11. Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, et al. Glutathione S-transferase π: Potential role in antitumor therapy. Drug Des Devel Ther. 2018; 12: 3535-3547. doi: 10.2147/DDDT.S169833

12. Lankin VZ, Shumaev KB, Tikhaze AK, Kurganov BI. Influence of dicarbonyls on kinetic characteristics of glutathione peroxidase. Dokl Biochem Biophys. 2017; 475: 287-290. doi: 10.1134/s1607672917040123

13. Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into manganese superoxide dismutase and human diseases. Int J Mol Sci. 2022; 23(24): 15893. doi: 10.3390/ijms232415893

14. Kryukov EV, Ivanov AV, Karpov VO, Alexandrin VV, Dygai AM, Kruglova MP, et al. Association of low molecular weight plasma aminothiols with the severity of coronavirus disease 2019. Oxid Med Cell Longev. 2021; 2021: 9221693. doi: 10.1155/2021/9221693

15. Liao FL, Peng DH, Chen W, Hu HN, Tang P, Liu YY, et al. Evaluation of serum hepatic enzyme activities in different COVID-19 phenotypes. J Med Virol. 2021; 93(4): 2365-2373. doi: 10.1002/jmv.26729

16. Wang L, Ahn YJ, Asmis R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol. 2020; 31: 101410. doi: 10.1016/j.redox.2019.101410

17. Semenova NV, Rychkova LV, Darenskaya MA, Kolesnikov SI, Nikitina OA, Petrova AG, et al. Superoxide dismutase activity in male and female patients of different age with moderate COVID-19. Bull Exp Biol Med. 2022; 173(1): 51-53. doi: 10.1007/s10517-022-05491-6

18. Nikitina OA, Darenskaya MA, Semenova NV, Kolesnikova LI. Antioxidant defense system: Regulation of metabolic processes, genetic determinants, methods of determination. Siberian Scientific Medical Journal. 2022; 42(3): 4-17. (In Russ.). doi: 10.18699/sSMJ20220301

19. Brichagina AS, Semenova NV, Kolesnikova LI. Age-related menopause and carbonyl stress. Advances in Gerontology. 2022; 12(4): 456-462. (In Russ.).

20. Semyonova NV. Oxidative stress and menopause (review of literature). Acta biomedica scientifica. 2014; 2(96): 120-125. (In Russ.).

21. Kolesnikova L, Semenova N, Madaeva I, Suturina L, Solodova E, Grebenkina L, et al. Antioxidant status in periand postmenopausal women. Maturitas. 2015; 81(1): 83-87.

22. Semenova NV, Brichagina AS, Madaeva IM, Kolesnikova LI. Enzymatic component of the glutathione system in Russian and Buryat women depends on the menopausal phase. J Evol Biochem Physiol. 2022; 58(4): 971-978. doi: 10.1134/s0022093022040032

23. Jin LY, Lv ZD, Wang K, Qian L, Song XX, Li XF, et al. Estradiol alleviates intervertebral disc degeneration through modulating the antioxidant enzymes and inhibiting autophagy in the model of menopause rats. Oxid. Med. Cell Longev. 2018; 2018: 7890291. doi: 10.1155/2018/7890291

24. Liu M, Chen F, Liu T, Chen F, Liu S, Yang J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017; 19(12): 580-586. doi: 10.1016/j.micinf.2017.08.008

25. Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G, et al. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol. 2013; 1(1): 340346. doi: 10.1016/j.redox.2013.05.003

26. Yegiazaryan A, Abnousian A, Alexander LJ, Badaoui A, Flaig B, Sheren N, et al. Recent developments in the understanding of immunity, pathogenesis and management of COVID-19. Int J Mol Sci. 2022; 23(16): 9297. doi: 10.3390/ijms23169297

27. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal. 2005; 7(1-2): 42-59. doi: 10.1089/ars.2005.7.42

28. Al-Hakeim HK, Al-Rubaye HT, Al-Hadrawi DS, Almulla AF, Maes M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: A proof of concept and mechanism study. Mol Psychiatry. 2023; 28(2): 564-578. doi: 10.1038/s41380022-01836-9

29. Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. J Res Med Sci. 2017; 22: 2. doi: 10.4103/1735-1995.199092

30. Camp OG, Bai D, Gonullu DC, Nayak N, Abu-Soud HM. Melatonin interferes with COVID-19 at several distinct ROS-related steps. J Inorg Biochem. 2021; 223: 111546. doi: 10.1016/j.jinorgbio.2021.111546

31. Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020; 6: 1558-1562. doi: 10.1021/acsinfecdis.0c00288

32. Basi Z, Turkoglu V. In vitro effect of oxidized and reduced glutathione peptides on angiotensin converting enzyme puri fied from human plasma. J Chromatogr B. 2019; 1104: 190-195. doi: 10.1016/j.jchromb.2018.11.023

33. Esmaeili-Nadimi A, Imanparast F, Alizadeh S, Vatannejad A, Mohaghegh P, Seyedmehdi SM, et al.Total antioxidant capacity and total oxidant status and disease severity in a cohort study of COVID-19 patients. Clin Lab. 2023; 69(2). doi: 10.7754/Clin.Lab.2022.220416

34. Aykac K, Ozsurekci Y, Yayla BCC, Gurlevik SL, Oygar PD, Bolu NB, et al. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol. 2021; 56(9): 2803-2810. doi: 10.1002/ppul.25549

35. Çakırca G, Damar Çakırca T, Üstünel M, Torun A, Koyuncu İ. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Ir J Med Sci. 2022; 191(4): 1925-1930. doi: 10.1007/s11845-021-02743-8


Review

For citations:


Semenova N.V., Vyrupaeva E.V., Kolesnikov S.I., Darenskaya M.A., Novikova E.A., Petrova A.G., Orlova E.A., Kolesnikova L.I. Menopausal women with moderate and asymptomatic COVID-19: antioxidant defense system biomarkers. Acta Biomedica Scientifica. 2024;9(2):112-119. https://doi.org/10.29413/ABS.2024-9.2.11

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)