Preview

Acta Biomedica Scientifica

Расширенный поиск

Молекулярные компоненты, иммунные и стволовые клетки в регенерации мягких тканей

https://doi.org/10.29413/ABS.2024-9.1.8

Аннотация

Заживление ран является пространственно-временным и  строго регулируемым процессом, который подразделяется на  четыре непрерывных и перекрывающихся этапа: гемостаз, воспаление, репарация (пролиферация) и  ремоделирование. Все этапы контролируются различными системами организма и зависят от регуляторной роли иммунных и стволовых клеток. Несмотря на значительный прогресс в понимании клеточных и молекулярных механизмов развития воспаления, остаётся не  до  конца ясной роль иммунной микросреды в процессе регенерации. С одной стороны, доказано решающее значение клеточных и  молекулярных компонентов иммунной системы в  репаративной реакции тканей, включая степень рубцевания, восстановление структуры и функции органов, а с другой – представлены малочисленные данные о потере способности тканей к регенерации, связанные с эволюцией иммунной компетентности. В обзоре представлены ключевые клеточно-молекулярные механизмы иммунного ответа и участия стволовых клеток в процессе репарации мягких тканей при их взаимодействии с  внеклеточным матриксом. Проведён анализ последних научных данных об участии компонентов иммунной микросреды и стволовых клеток в репарации мягких тканей по публикациям, представленным в системах Google Scholar, Medline, PubMed, Scopus, Web of Science. Показано, что характер такого ответа и его продолжительность оказывают значительное влияние на исход репарации – от неполного восстановления (рубцевание или  фиброз) до  полноценной регенерации. Указывается, что  в  процессах репарации и ремоделирования мягких тканей принимают участие различные типы иммунных и стволовых клеток, и их взаимодействие должно быть точно контролируемым. Данные обзора могут стать основой для разработки новых терапевтических подходов для восстановления мягких тканей посредством иммунной регуляции или использованием стволовых клеток и внеклеточных везикул.

Об авторах

Н. Г. Плехова
ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России
Россия

Плехова Наталья Геннадьевна – доктор биологических наук, доцент, заведующая Центральной научно-исследовательской лабораторией,

690002, г. Владивосток, просп. Острякова, 2



Д. В. Королев
ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России
Россия

Королев Дмитрий Валерьевич – кандидат медицинских наук, ассистент отдела гибридных образовательных технологий в  хирургии Института симуляционной аттестации,

690002, г. Владивосток, просп. Острякова, 2



В. Б. Шуматов
ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России
Россия

Шуматов Валентин Борисович –доктор медицинских наук, профессор, ректор, 

690002, г. Владивосток, просп. Острякова, 2



Список литературы

1. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev, 2019; 99(1): 665-706. doi: 10.1152/physrev.00067.2017

2. Palomino-Segura M, Hidalgo A. Immunity: Neutrophil quorum at the wound. Curr Biol. 2020; 30(14): R828-R830. doi: 10.1016/j.cub.2020.05.045 141

3. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: From mechanism to therapy. Nat Med. 2014; 20: 857-869.

4. Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory microenvironment of skin wounds. Front Immunol. 2022; 13: 789274. doi: 10.3389/fimmu.2022.789274

5. Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, et al. The role of the immune microenvironment in bone, cartilage, and soft tis-sue regeneration: From mechanism to therapeutic opportunity. Mil Med Res. 2022; 9(1): 65. doi: 10.1186/s40779-022-00426-8

6. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012; 2012: 315941. doi: 10.1155/2012/315941

7. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007; 25(1): 9-18. doi: 10.1016/j.clindermatol.2006.09.007

8. Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: Positive actions and negative reactions. Adv Wound Care (New Rochelle). 2013; 2(7): 379-388. doi: 10.1089/wound.2012.0383

9. Zheng SY, Wan XX, Kambey PA, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes. 2023; 14(4): 364-395. doi: 10.4239/wjd.v14.i4.364

10. Jun JI, Kim KH, Lau LF. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun. 2015; 6: 7386. doi: 10.1038/ncomms8386

11. McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death. 2014; 7: 15-23. doi: 10.4137/JCD.S11038

12. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol. 2019; 10: 85. doi: 10.3389/fimmu.2019.00085

13. Diller RB, Tabor AJ. The role of the extracellular matrix (ECM) in wound healing: A review. Biomimetics (Basel). 2022; 7(3): 87. doi: 10.3390/biomimetics7030087

14. Enzmann G, Kargaran S, Engelhardt B. Ischemia-reperfusion injury in stroke: Impact of the brain barriers and brain immune privilege on neutrophil function. Ther Adv Neurol Disord. 2018; 11: 1756286418794184. doi: 10.1177/1756286418794184

15. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015; 21(7): 815-819. doi: 10.1038/nm.3887

16. Kanno E, Kawakami K, Ritsu M, Ishii K, Tanno H, Toriyabe S, et al. Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: The critical role of tumor necrosis factor-α secreted from infiltrating neutrophils. Wound Repair Regen. 2011; 19(5): 608-621. doi: 10.1111/j.1524-475X.2011.00721.x

17. Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014; 193(10): 5171-5180. doi: 10.4049/jimmunol.1400625

18. Kono H, Onda A, Yanagida T. Molecular determinants of sterile inflammation. Curr Opin Immunol. 2014; 26: 147-156. doi: 10.1016/j.coi.2013.12.004

19. Soliman AM, Barreda DR. Acute inflammation in tissue healing. Int J Mol Sci. 2022; 24(1): 641. doi: 10.3390/ijms24010641

20. Kovtun A, Messerer DAC, Scharffetter-Kochanek K, HuberLang M, Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: Two sides of the same coin J Immunol Res. 2018; 2018: 8173983. doi: 10.1155/2018/8173983

21. Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, et al. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells. 2021; 13(11): 1667-1695. doi: 10.4252/wjsc.v13.i11.1667

22. Bayer F, Dremova O, Khuu MP, Pontarollo G, Kiouptsi K, Soshnikova N, et al. The interplay between nutrition, innate immunity, and the commensal microbiota in adaptive intestinal morphogenesis. Nutrients. 2021; 13(7): 2198. doi: 10.3390/nu13072198

23. Frieri M, Kumar K, Boutin A. Wounds, burns, trauma, and injury. Wound Med. 2016; 13: 12-17.

24. André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int J Mol Sci. 2017; 18(10): 2149. doi: 10.3390/ijms18102149

25. Brazil JC, Quiros M, Nusrat A, Parkos CA. Innate immune cell-epithelial crosstalk during wound repair. J Clin Invest. 2019; 129(8): 2983-2993. doi: 10.1172/JCI124618

26. Wu YS, Chen SN. Apoptotic cell: Linkage of inflammation and wound healing. Front Pharmacol. 2014; 5: 1. doi: 10.3389/fphar.2014.00001

27. Anderton H, Alqudah S. Cell death in skin function, inflammation, and disease. Biochem J. 2022; 479(15): 1621-1651. doi: 10.1042/BCJ20210606

28. Poplimont H, Georgantzoglou A, Boulch M, Walker HA, Coombs C, Papaleonidopoulou F, et al. Neutrophil swarming in damaged tissue is orchestrated by connexins and cooperative calcium alarm signals. Curr Biol. 2020; 30(14): 2761-2776.e7. doi: 10.1016/j.cub.2020.05.030

29. Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016; 60(2): 108-114. doi: 10.1016/j.ceca.2016.03.004

30. Sofoluwe A, Bacchetta M, Badaoui M, Kwak BR, Chanson M. ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci Rep. 2019; 9(1): 16556. doi: 10.1038/s41598-019-53058-9

31. Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Bio. 2017; 61: 3-11. doi: 10.1016/j.semcdb.2016.08.006

32. Kim SY, Nair MG. Macrophages in wound healing: Activation and plasticity. Immunol Cell Biol. 2019; 97(3): 258-267. doi: 10.1111/imcb.12236

33. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 2014; 5: 514. doi: 10.3389/fimmu.2014.00514

34. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front Immunol. 2019; 10: 1084. doi: 10.3389/fimmu.2019.01084

35. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012; 122(3): 787-795. doi: 10.1172/JCI59643

36. Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017; 199(1): 17-24. doi: 10.4049/jimmunol.1700223

37. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016; 44(3): 450-462. doi: 10.1016/j.immuni.2016.02.015

38. Brown BN, Sicari BM, Badylak SF. Rethinking regenerative medicine: A macrophage-centered approach. Front Immunol. 2014. 5: 510. doi: 10.3389/fimmu.2014.00510

39. Yan D, Liu S, Zhao X, Bian H, Yao X, Xing J, et al. Recombinant human granulocyte macrophage colony stimulating factor in deep second-degree burn wound healing. Med (Baltimore). 2017; 96(22): e6881. doi: 10.1097/MD.0000000000006881

40. Smigiel KS, Parks WC. Macrophages, wound healing, and fibrosis: Recent insights. Curr Rheumatol Rep. 2018; 20(4): 17. doi: 10.1007/s11926-018- 0725-5

41. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 20134; 110(43): 17253-17258. doi: 10.1073/pnas.1308887110

42. Postat J, Olekhnovitch R, Lemaître F, Bousso P. A metabolism-based quorum sensing mechanism contributes to termination of inflammatory responses. Immunity. 2018; 49(4): 654-665.e5. doi: 10.1016/j.immuni.2018.07.014

43. Kienle K, Lämmermann T. Neutrophil swarming: An essential process of the neutrophil tissue response. Immunol Rev. 2016; 273(1): 76-93. doi: 10.1111/imr.12458

44. Uderhardt S, Martins AJ, Tsang JS, Lämmermann T, Germain RN. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell. 2019; 177(3): 541-555.e17. doi: 10.1016/j.cell.2019.02.028

45. Zhang J, Qu C, Li T, Cui W, Wang X, Du J. Phagocytosis mediated by scavenger receptor class BI promotes macrophage transition during skeletal muscle regeneration. J Biol Chem. 2019; 294(43): 15672-15685. doi: 10.1074/jbc.RA119.008795

46. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 2019; 6(20): 1900513. doi: 10.1002/advs.201900513

47. Wulff BC, Wilgus TA. Mast cell activity in the healing wound: More than meets the eye? Exp Dermatol. 2013; 22(8): 507- 510. doi: 10.1111/exd.12169

48. Numata Y, Terui T, Okuyama R, Hirasawa N, Sugiura Y, Miyoshi I, et al. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. J Invest Dermatol. 2006; 126(6): 1403-1409. doi: 10.1038/sj.jid.5700253

49. Komi DEA, Wöhrl S, Bielory L. Mast cell biology at molecular level: A comprehensive review. Clin Rev Allergy Immunoll. 2020; 58(3): 342-365. doi: 10.1007/s12016-019-08769-2

50. Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020; 58(3): 298-312. doi: 10.1007/s12016-019-08729-w

51. Liao B, Ouyang Q, Song H, Wang Z, Ou J, Huang J, et al. The transcriptional characteristics of mast cells derived from skin tissue in type 2 diabetes patients at the single-cell level. Acta Histochem. 2021; 123(7): 151789. doi: 10.1016/j.acthis.2021.151789

52. Bacci S. Fine regulation during wound healing by mast cells, a physiological role not yet clarified. Int J Mol Sci. 2022; 23(3): 1820. doi: 10.3390/ijms23031820

53. Bacci S, Bonelli A, Romagnoli P. Mast cells in injury response. In: Abreu T, Silva G (eds). Cell movement: New research trends. New York: Nova Science Publishers; 2009: 81-121.

54. Kim TG, Kim SH, Lee MG. The origin of skin dendritic cell network and its role in psoriasis. Int J Mol Sci. 2017; 19(1): 42. doi: 10.3390/ijms19010042

55. Su Q, Igyártó BZ. Keratinocytes share gene expression fingerprint with epidermal langerhans cells via mRNA transfer. J Invest Dermatol. 2019; 139(11): 2313-2323.e8. doi: 10.1016/j.jid.2019.05.006

56. Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. Increased number of langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res. 2013; 57(1-3): 222-228. doi: 10.1007/s12026-013-8474-z

57. Kohn S, Kohn D, Schiller D. Effect of zinc supplementation on epidermal langerhans’ cells of elderly patients with decubital ulcers. J Dermatol. 2000; 27(4): 258-263. doi: 10.1111/j.1346-8138.2000.tb02161.x

58. Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med. 2010; 207(13): 2921-2930. doi: 10.1084/jem.20101102

59. Sobecki M, Krzywinska E, Nagarajan S, Audigé A, Huỳnh K, Zacharjasz J, et al. NK cells in hypoxic skin mediate a trade-off between wound healing and antibacterial defence. Nat Commun. 2021; 12(1): 4700. doi: 10.1038/s41467-021-25065-w

60. Thomas H, Jäger M, Mauel K, Brandau S, Lask S, Flohé SB. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferongamma secretion. Mediators Inflamm. 2014; 2014: 143463. doi: 10.1155/2014/143463

61. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity. 2016; 44(2): 355-367. doi: 10.1016/j.immuni.2016.01.009

62. Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC, Lowe MM, et al. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci Immunol. 2021; 6(62): eabg2329. doi: 10.1126/sciimmunol.abg2329

63. Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021; 21(4): 221-232. doi: 10.1038/s41577-020-00452-4

64. Liu Z, Xu Y, Zhang X, Liang G, Chen L, Xie J, et al. Defects in dermal Vγ4 γδT cells result in delayed wound healing in diabetic mice. Am J Transl Res. 2016; 8(6): 2667-2680.

65. Chen L, Mehta ND, Zhao Y, DiPietro LA. Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol. 2014; 23(3): 189-194. doi: 10.1111/exd.12346

66. Davis PA, Corless DJ, Aspinall R, Wastell C. Effect of CD4+ and CD8+ cell depletion on wound healing. Br J Surg. 2001; 88(2): 298-304. doi: 10.1046/j.1365-2168.2001.01665.x

67. Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019; 21(1): 18- 24. doi: 10.1038/s41556-018-0237-6

68. Planat-Benard V, Varin A, Casteilla L. MSCs and inflammatory cells crosstalk in regenerative medicine: Concerted actions for optimized resolution driven by energy metabolism. Front Immunol. 2021; 12: 626755. doi: 10.3389/fimmu.2021.626755

69. Dhoke NR, Geesala R, Das A. Low oxidative stress-mediated proliferation JNK-FOXO3a-catalase signaling in transplanted adult stem cells promotes wound tissue regeneration. Antioxid Redox Signal. 2018; 28(11): 1047-1065. doi: 10.1089/ars.2016.6974

70. Jere SW, Houreld NN, Abrahamse H. Role of the PI3K/Akt (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine Growth Factor Rev. 2019; 50: 52-59. doi: 10.1016/j.cytogfr.2019.03.001

71. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017; 169(6): 985-999. doi: 10.1016/j.cell.2017.05.016

72. Zhang B, Han F, Wang Y, Sun Y, Zhang M, Yu X, et al. Cells-micropatterning biomaterials for immune activation and bone regeneration. Adv Sci (Weinh). 2022; 9(18): e2200670. doi: 10.1002/advs.202200670

73. Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release. 2021; 331: 376-389. doi: 10.1016/j.jconrel.2021.01.034

74. Toh WS, Zhang B, Lai RC, Lim SK. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018; 20(12): 1419- 1426. doi: 10.1016/j.jcyt.2018.09.008

75. Wei F, Li Z, Crawford R, Xiao Y, Zhou Y. Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med. 2019; 13(11): 1978-1991. doi: 10.1002/term.2947

76. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12(5): 347-357. doi: 10.1038/nrd3978


Рецензия

Для цитирования:


Плехова Н.Г., Королев Д.В., Шуматов В.Б. Молекулярные компоненты, иммунные и стволовые клетки в регенерации мягких тканей. Acta Biomedica Scientifica. 2024;9(1):73-84. https://doi.org/10.29413/ABS.2024-9.1.8

For citation:


Plekhova N.G., Korolev D.V., Shumatov V.B. Molecular components, immune and stem cells in soft tissue regeneration. Acta Biomedica Scientifica. 2024;9(1):73-84. (In Russ.) https://doi.org/10.29413/ABS.2024-9.1.8

Просмотров: 460


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)