Роль лизофосфатидной кислоты и её рецепторов в патогенезе бронхиальной астмы
https://doi.org/10.29413/ABS.2024-9.1.2
Аннотация
Лизофосфатидная кислота (LPA, lysophosphatidic acid) является биологически активным липидным медиатором, регулирующим ряд сигнальных путей, вовлечённых в патогенез бронхиальной астмы (БА). Интерес к изучению взаимоотношений LPA с LPA-рецепторами (LPARs, lysophosphatidic acid receptors) и ионными каналами с транзиторным рецепторным потенциалом (TRP, transient receptor potential) обусловлен их ролью в инициации и развитии бронхиальной обструкции, что предполагает разработку новых эффективных стратегий лечения БА через блокирование синтеза LPA и/или регуляции активности лиганд-рецепторного взаимоотношения.
Цель обзора. Обобщить представления о роли лизофосфатидной кислоты и её рецепторов в патогенезе бронхиальной астмы на основании анализа статей, опубликованных на английском языке в период с 2020 по 2023 г. в базе данных PubMed.
Заключение. В данном обзоре обобщены последние литературные данные о химической структуре, путях биосинтеза и рецепторах LPA. Представлена информация о роли LPA, LPARs и TRP-каналов в патогенезе БА. Обобщены терапевтические стратегии БА, нацеленные на LPA, LPARs и TRP-каналы. Данный обзор подчёркивает не только новый взгляд на понимание механизмов инициации астматических реакций, но и возможные способы управления ими на этапе коррекции их развития.
Ключевые слова
Об авторах
О. Ю. КытиковаРоссия
Кытикова Оксана Юрьевна – доктор медицинских наук, старший научный сотрудник лаборатории восстановительного лечения,
690105, г. Владивосток, ул. Русская, 73г
Т. П. Новгородцева
Россия
Новгородцева Татьяна Павловна – доктор биологических наук, профессор, заместитель директора по научной работе, главный научный сотрудник лаборатории биомедицинских исследований,
690105, г. Владивосток, ул. Русская, 73г
Ю. К. Денисенко
Россия
Денисенко Юлия Константиновна – доктор биологических наук, заведующая лабораторией биомедицинских исследований,
690105, г. Владивосток, ул. Русская, 73г
Список литературы
1. Kano K, Aoki J, Hla T. Lysophospholipid mediators inhealth and disease. Annu Rev Pathol. 2022; 17: 459-483. doi: 10.1146/annurev-pathol-050420-025929
2. Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic acid receptors: Biochemical and clinical implications in different diseases. J Cancer. 2020; 11(12): 3519-3535. doi: 10.7150/jca.41841
3. Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. JNeuroinflammation. 2021; 18(1): 191. doi: 10.1186/s12974-021-02241-9
4. Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, Herrington BA, et al. PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol. 2021; 599(4): 1335-1354. doi: 10.1113/JP280749
5. Kondo M, Tezuka T, Ogawa H, Koyama K, Bando H, Azuma M, et al. Lysophosphatidic acid regulates the differentiation of Th2 cells and its antagonist suppresses allergic airway inflammation. Int Arch Allergy Immunol. 2021; 182: 1-13. doi: 10.1159/000509804
6. Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, et al. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem. 2021; 222: 113574. doi: 10.1016/j.ejmech.2021.113574
7. Zhao J, Zhao Y. Lysophospholipids in lung inflammatory diseases. Adv Exp Med Biol. 2021; 1303: 373-391. doi: 10.1007/978-3-030-63046-1_20
8. Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol. 2018; 120(3): 1198-1211. doi: 10.1152/jn.00226.2018
9. Langedijk J, Araya EI, Barroso AR, Tolenaars D, Nazaré M, Belabed H, et al. An LPAR5 –antagonist that reduces nociception and increases pruriception. Front Pain Res (Lausanne). 2022; 3: 963174. doi: 10.3389/fpain.2022.963174
10. Kytikova OY, Novgorodtseva TP, Denisenko YK, Naumov DE, Gvozdenko TA, Perelman JM. Thermosensory transient receptor potential ion channels and asthma. Biomedicines. 2021; 9(7): 816. doi: 10.3390/biomedicines9070816
11. Jordt SE. TRPA1: An asthma target with a zing. J Exp Med. 2021; 218(4): e20202507. doi: 10.1084/jem.20202507
12. Deng L, Ma P, Wu Y, Ma Y, Yang X, Li Y, et al. High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model. Environ Pollut. 2020; 256: 113433. doi: 10.1016/j.envpol.2019.113433
13. Long L, Yao H, Tian J, Luo W, Yu X, Yi F, et al. Heterogeneity of cough hypersensitivity mediated by TRPV1 and TRPA1 in patients with chronic refractory cough. Respir Res. 2020; 20: 112. doi: 10.1186/s12931-019-1077-z
14. Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient receptor potential (TRP) channels in airway toxicity and disease: An update. Cells. 2022; 11(18): 2907. doi: 10.3390/cells11182907
15. Li M, Fan X, Ji L, Fan Y, Xu L. Exacerbating effects of trimellitic anhydride in ovalbumin-induced asthmatic mice and the gene and protein expressions of TRPA1, TRPV1, TRPV2 in lung tissue. Int Immunopharmacol. 2019; 69: 159-168. doi: 10.1016/j.intimp.2019.01.038
16. Wang C, Meng X, Meng M, Shi M, Sun W, Li X, et al. Oxidative stress activates the TRPM2-Ca2+-NLRP3 axis to promote PM2.5-induced lung injury of mice. Biomed Pharmacother. 2020; 130: 110481. doi: 10.1016/j.biopha.2020.110481
17. Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman Al-Ahmad M, еt al. WAO-ARIA consensus on chronic cough – Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J. 2021; 14(12): 100617. doi: 10.1016/j.waojou.2021.100617
18. Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. EurJ Pharmacol. 2022; 915: 174692. doi: 10.1016/j.ejphar.2021.174692
19. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. TRPV1: Structure, endogenous agonists, and mechanisms. Int J Mol Sci. 2020; 21(10): 3421. doi: 10.3390/ijms21103421
20. Tigyi GL, Johnson LR, Lee SC, Norman DD, Szabo E, Balogh A, et al. Lysophosphatidic acid type 2 receptor agonists in targeted drug development offer broad therapeutic potential. J Lipid Res. 2019: 60(3); 464-474. doi: 10.1194/jlr.S091744
21. Zulfikar S, Mulholland S, Adamali H, Barratt SL. Inhibitors of the autotaxin-lysophosphatidic acid axis and their potential in the treatment of interstitial lung disease: Current perspectives. Clin Pharmacol. 2020; 12: 97-108. doi: 10.2147/CPAA.S228362
22. Yaginuma S, Kawana H, Aoki J. Current knowledge on mammalian phospholipase A1, brief history, structures, biochemical and pathophysiological roles. Molecules. 2022; 27(8): 2487. doi: 10.3390/molecules27082487
23. Panagopoulou M, Fanidis D, Aidinis V, Chatzaki E. ENPP2 methylation in health and cancer. IntJ Mol Sci. 2021; 22(21): 11958. doi: 10.3390/ijms222111958
24. Joshi L, Plastira I, Bernhart E, Reicher H, Triebl A, Köfeler HC, et al. Inhibition of autotaxin and lysophosphatidic acid receptor 5 attenuates neuroinflammation in LPS-activated BV-2 microglia and a mouse endotoxemia model. IntJ Mol Sci. 2021; 22(16); 8519. doi: 10.3390/ijms22168519
25. Liu S, Paknejad N, Zhu L, Kihara Y, Ray M, Chun J, et al. Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nat Commun. 2022; 13(1): 731. doi: 10.1038/s41467-022-28417-2
26. Tran KC, Zhao J. Lysophosphatidic acid regulates Rho family of GTPases in lungs. Cell Biochem Biophys. 2021; 79(3): 493-496. doi: 10.1007/s12013-021-00993-y
27. Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett. 2021; 748: 135719. doi: 10.1016/j.neulet.2021.135719
28. Yelshanskaya MV, Sobolevsky AI. Ligand-binding sites in vanilloid-subtype TRP channels. Front Pharmacol. 2022; 13: 900623. doi: 10.3389/fphar.2022.900623
29. Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020; 209: 107497. doi: 10.1016/j.pharmthera.2020.107497
30. Nam JH, Kim WK. The role of TRP channels in allergic inflammation and its clinical relevance. Curr Med Chem. 2020; 27(9): 1446-1468. doi: 10.2174/0929867326666181126113015
31. Fine M, Li X. A structural overview of TRPML1 and the TRPML family. Handb Exp Pharmacol. 2023; 278: 181-198. doi: 10.1007/164_2022_602
32. Nadezhdin KD, Neuberger A, Trofimov YA, Krylov NA, Sinica V, Kupko N, et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat Struct Mol Biol. 2021; 28(7): 564-572. doi: 10.1038/s41594-021-00615-4
33. Thapa D, Valente JS, Barrett B, Smith MJ, Argunhan F, Lee SY, et al. Dysfunctional TRPM8 signalling in the vascular response to environmental cold in ageing. Elife. 2021; 10: e70153. doi: 10.7554/eLife.70153
34. Islas LD. Closing in on the heat-activation mechanisms of TRPV channels. J Physiol. 2021; 599(21): 4733-4734. doi: 10.1113/JP282347
35. Phan TX, Ton HT, Gulyás H, Pórszász R, Tóth A, Russo R, et al. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. JPhysiol. 2020; 598(24): 5639- 5659. doi: 10.1113/JP279909
36. Balestrini A, Joseph V, Dourado M, Reese RM, Shields SD, Rougé L, et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med. 2021; 218: e20201637. doi: 10.1084/jem.20201637
37. Rapp E, Lu Z, Sun L, Serna SN, Almestica-Roberts M, Burrell KL, et al. Mechanisms and consequences of variable TRPA1 expression by airway epithelial cells: Effects of TRPV1 genotype and environmental agonists on cellular responses to pollutants in vitro and asthma. Environ Health Perspect. 2023; 131(2): 27009. doi: 10.1289/EHP11076
38. Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, et al. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol Rev. 2020; 100(2): 725-803. doi: 10.1152/physrev.00005.2019
39. Reese RM, Dourado M, Anderson K, Warming S, Stark KL, Balestrini A, et al. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain; itch; and asthma. Sci Rep. 2020; 10(1): 979. doi: 10.1038/s41598-020-57936-5
40. Jentsch Matias de Oliveira JR, Amorim MA, André E. The role of TRPA1 and TRPV4 channels in bronchoconstriction and plasma extravasation in airways of rats treated with captopril. Pulm Pharmacol Ther. 2020; 65: 102004. doi: 10.1016/j.pupt.2021.102004
41. Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M. Interaction between TRPA1 and TRPV1: synergy on pulmonary sensory nerves. Pulm Pharmacol Ther. 2015; 35: 87-93. doi: 10.1016/j.pupt.2015.08.003
42. Riemma MA, Cerqua I, Romano B, Irollo E, Bertolino A, Camerlingo R, et al. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol. 2022; 179(8): 1753-1768. doi: 10.1111/bph.15754
43. Corte TJ, Lancaster L, Swigris JJ, Maher TM, Goldin JG, Palmer SM, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA1) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021; 8(1): e001026. doi: 10.1136/bmjresp-2021-001026
44. KimSJ, MoonHG, ParkGY. The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids. 2020; 1865(5): 158641. doi: 10.1016/j.bbalip.2020.158641
45. Georas SN. LPA and autotaxin: Potential drug targets inasthma? Cell Biochem Biophys. 2021; 79(3): 445-448. doi: 10.1007/s12013-021-01023-7
46. Zhao Y, Hasse S, Vaillancourt M, Zhao C, Davis L, Boilard E, et al. Phospholipase A1 member A activates fibroblast-like synoviocytes through the autotaxin-lysophosphatidic acid receptor axis. IntJ Mol Sci. 2021; 22(23): 12685. doi: 10.3390/ijms222312685
47. Di Lollo V, Canciello A, Orsini M, Bernabò N, Ancora M, Di Federico M et al. Transcriptomic and computational analysis identified LPA metabolism, KLHL14 and KCNE3 as novel regulators of epithelial-mesenchymal transition. Sci Rep. 2020; 10(1): 4180. doi: 10.1038/s41598-020-61017-y
48. Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and poten tial new therapy for asthma. Pharmacol Res. 2020; 159: 104995. doi: 10.1016/j.phrs.2020.104995
49. Falvey A, Duprat F, Simon T, Hugues-Ascery S, Conde SV, Glaichenhaus N, et al. Electrostimulation of the carotid sinus nerve in mice attenuates inflammation via glucocorticoid receptor on myeloid immune cells. J Neuroinflammation. 2020; 17(1): 368. doi: 10.1186/s12974-020-02016-8
50. Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: The current pharmacological toolbox. Prog Lipid Res. 2015; 58: 51-75. doi: 10.1016/j.plipres.2015.01.004
51. Lee YJ, Im DS. Efficacy comparison of LPA2 antagonist H2L5186303 and agonist GRI977143 on ovalbumin-induced allergic asthma in BALB/c mice. Int J Mol Sci. 2022; 23(17): 9745. doi: 10.3390/ijms23179745
52. Jia Y, Li Y, XuXD, Tian Y, ShangH. Design anddevelopment of autotaxin inhibitors. Pharmaceuticals (Basel). 2021; 14(11): 1203. doi: 10.3390/ph14111203
53. Cuozzo JW, Clark MA, Keefe AD, Kohlmann A, Mulvihill M, Ni H, et al. Novel autotaxin inhibitor for the treatment of idiopathic pulmonary fibrosis: A clinical candidate discovered using DNA-encoded chemistry. J Med Chem. 2020; 63(14): 7840-7856. doi: 10.1021/acs.jmedchem.0c00688
54. Nie C, Zhang L, Chen X, Li Y, Ha F, Li H. Autotaxin: An early warning biomarker for acute-on-chronic liver failure. J Clin Transl Hepatol. 2020; 8: 240. doi: 10.14218/JCTH.2020.00045
55. Alioli C, Demesmay L, Peyruchaud O, Machuca-Gayet I. Autotaxin/lysophosphatidic acid axis: From bone biology to bone disorders. IntJ Mol Sci. 2022; 23(7): 3427. doi: 10.3390/ijms23073427
56. Fukui M, Tsutsumi T, Yamamoto-Mikami A, Morito K, TakahashiN, TanakaT, et al. Distinct contributions oftwo choline-producing enzymatic activities to lysophosphatidic acid production in human amniotic fluid from pregnant women inthe second trimester andafter parturition. Prostaglandins Other Lipid Mediat. 2020; 150: 106471.
57. Isshiki T, ShimizuH, SakamotoS, YamasakiA, Miyoshi S, Nakamura Y, et al. Serum autotaxin levels inchronic disease andacute exacerbation of fibrosing interstitial lung disease. ERJ Open Res. 2022; 8(2): 00683-2021. doi: 10.1183/23120541.00683-2021
58. Abdel-Magid AF. Therapeutic potential of autotaxin inhibitors in treatment of interstitial lung diseases. ACS Med Chem Lett. 2020; 11(11): 2075-2076. doi: 10.1021/acsmedchemlett
59. Lei H, Li Z, Li T, Wu H, Yang J, Yang X, et al. Novel imidazo[1,2-a]pyridine derivatives as potent ATX allosteric inhibitors: Design, synthesis and promising in vivo anti-fibrotic efficacy in mice lung model. Bioorg Chem. 2022; 120: 105590. doi: 10.1016/j.bioorg.2021.105590
Рецензия
Для цитирования:
Кытикова О.Ю., Новгородцева Т.П., Денисенко Ю.К. Роль лизофосфатидной кислоты и её рецепторов в патогенезе бронхиальной астмы. Acta Biomedica Scientifica. 2024;9(1):12-22. https://doi.org/10.29413/ABS.2024-9.1.2
For citation:
Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K. Lysophosphatidic acid and itsreceptors: Role in bronchial asthma pathogenesis. Acta Biomedica Scientifica. 2024;9(1):12-22. (In Russ.) https://doi.org/10.29413/ABS.2024-9.1.2