Preview

Acta Biomedica Scientifica

Advanced search

Role of ITGB3, GP1B1, and ITGA2 gene polymorphisms in platelet dysfunction in patients with COVID-19-associated lung damage

https://doi.org/10.29413/ABS.2023-8.6.2

Abstract

The aim of the work. To investigate platelet aggregation, polymorphism in the genes that ensure its implementation, and the association between these indicators in patients with COVID-19-associated lung damage, depending on the severity of the clinical course.

Methodology. The study involved 75  patients with COVID-19, which, depending on  the severity of lung involvement, were divided into two groups: patients with  damage of up to 50  % of the lung parenchyma (n  =  48) and with damage of more than 50 % (n = 27) respectively. The control group consisted of healthy people (n = 24), comparable in sex and age. In all individuals, the number of platelets, platelet aggregation induced by ADP, collagen and ristomycin were studied; polymorphisms rs6065 in the GP1BA gene, rs1126643 in the ITGA2 gene, and rs5918 in the ITGB3 gene were determined by polymerase chain reaction. The analysis of the obtained data was executed using the IBM SPSS Statistics v. 23 (IMB Corp., USA).

Results and discussion. In patients with moderate and severe COVID-19-associated lung damage, platelet aggregation induced by ADP, collagen, and ristomycin accelerated; in severe cases, the number of  platelets decreased. The frequency of variants of the rs6065 polymorphism did not change, the frequency of occurrence of the T/C genotype of the rs5918 polymorphism increased; with moderate severity, the frequency of occurrence of the C/T and T/T genotypes of the rs1126643 polymorphism increased; with severe lung damage, the frequency of occurrence of the mutant C/C genotype polymorphism rs5918 increased. In moderate lung damage, the presence of the  mutant T/T polymorphism rs1126643 accelerated collagen-induced platelet aggregation; in severe cases, the presence of mutant C/C and heterozygous variant C/T polymorphism rs5918 accelerated ADP-induced platelet aggregation. There was no effect of the rs6065 polymorphism on platelet aggregation. The data obtained indicate the possible role of genetic predisposition in the activation of platelet aggregation in patients with COVID-19-associated lung damage.

About the Authors

M. V. Osikov
South Ural State Medical University; Chelyabinsk Regional Clinical Hospital
Russian Federation

Mikhail V. Osikov – Dr. Sc. (Med.), Professor, Head of the Department of Pathophysiology; Head of the Research Department 

Vorovskogo str. 64, Chelyabinsk 454048;
Vorovskogo str. 70, Chelyabinsk 454048



V. N. Antonov
South Ural State Medical University; Regional Clinical Hospital No. 3
Russian Federation

Vladimir  N. Antonov – Dr.  Sc. (Med.), Professor at the Department of Therapy, Institute of Continuing Professional Education; Head of the Regional Pulmonology Center 

Vorovskogo str. 64, Chelyabinsk 454048;
Pobedy Ave. 271, Chelyabinsk 454136



S. O. Zotov
South Ural State Medical University; Regional Clinical Hospital No. 3
Russian Federation

Semen O. Zotov – Teaching Assistant at the Department of Pathophysiology; Head of the Infectious Diseases Department No. 5, Regional Center for Infectious Diseases 

Vorovskogo str. 64, Chelyabinsk 454048;
Pobedy Ave. 271, Chelyabinsk 454136



References

1. Barrett TJ, Schlegel M, Zhou F, Gorenchtein M, Bolstorff J, Moore KJ, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019; 11(517): eaax0481. doi: 10.1126/scitranslmed.aax0481

2. Rolfes V, Ribeiro LS, Hawwari I, Böttcher L, Rosero N, Maasewerd S, et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep. 2020; 31(6): 107615. doi: 10.1016/j.celrep.2020.107615

3. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020; 217(10): e20200674. doi: 10.1084/jem.20200674

4. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020; 369(6508): eabc8511. doi: 10.1126/science.abc8511

5. Smilowitz NR, Kunichoff D, Garshick M, Shah B, Pillinger M, Hochman JS, et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J. 2021; 42(23): 2270-2279. doi: 10.1093/eurheartj/ehaa1103

6. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010; 48(8): 2940-2947. doi: 10.1128/JCM.00636-10

7. Denorme F, Manne BK, Portier I, Petrey AC, Middleton EA, Kile BT, et al. COVID-19 patients exhibit reduced procoagulant platelet responses. J Thromb Haemost. 2020; 18(11): 3067-3073. doi: 10.1111/jth.15107

8. Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020; 127(11): 1404-1418. doi: 10.1161/CIRCRESAHA.120.317703

9. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6): e438-e440. doi: 10.1016/S2352-3026(20)30145-9

10. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032

11. Ponti G, Pastorino L, Manfredini M, Ozben T, Oliva G, Kaleci S, et al. COVID-19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J Clin Lab Anal. 2021; 35(7): e23798. doi: 10.1002/jcla.23798

12. Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19): Federal clinical guidelines; 15th version d.d. 02.02.2022. Moscow; 2022. (In Russ.) URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf. [date of access: 03.04.2023].

13. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. doi: 10.1111/jth.14768

14. Gaiz A, Mosawy S, Colson N, Singh I. Thrombotic and cardiovascular risks in type two diabetes; Role of platelet hyperactivity. Biomed Pharmacother. 2017; 94: 679-686. doi: 10.1016/j.biopha.2017.07.121

15. Castaman G, Federici AB. Type 2B von Willebrand disease: A matter of plasma plus platelet abnormality. Semin Thromb Hemost. 2016; 42(5): 478-482. doi: 10.1055/s-0036-1579638

16. Anisimova AV, Gunchenko AS, Ikonnikova AYu, Galkin SS, Avdonina MA, Nasedkina TV. Clinical and genetic analysis of risk factors for the development of acute and chronic cerebral ischemia. S.S. Korsakov Journal of Neurology and Psychiatry. 2019; 119(3 vyp 2): 62-67. (In Russ.). doi: 10.17116/jnevro201911903262

17. Kraft P, Drechsler C, Gunreben I, Heuschmann PU, Kleinschnitz C. Case-control study of platelet glycoprotein receptor Ib and IIb/IIIa expression in patients with acute and chronic cerebrovascular disease. PLoS One. 2015; 10(3): e0119810. doi: 10.1371/journal.pone.0119810

18. Li R, Emsley J. The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost. 2013; 11(4): 605-614. doi: 10.1111/jth.12144

19. Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, et al. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol. 2019; 12(1): 26. doi: 10.1186/s13045-019-0709-6

20. Pagani G, Pereira JPV, Stoldt VR, Beck A, Scharf RE, Gohlke H. The human platelet antigen-1b (Pro33) variant of αIIbβ3 allosterically shifts the dynamic conformational equilibrium of this integrin toward the active state. J Biol Chem. 2018; 293(13): 4830-4844. doi: 10.1074/jbc.RA118.002149

21. Abboud N, Ghazouani L, Ben-Hadj-Khalifa S, Anabi F, Added F, Khalfallah A, et al. Human platelet alloantigens HPA-1, HPA-2, and HPA-3 polymorphisms associated with extent of severe coronary artery disease. J Thromb Thrombolysis. 2010; 29(4): 409-415. doi: 10.1007/s11239-009-0368-5

22. Goldschmidt-Clermont PJ, Coleman LD. Higher prevalence of GPIIIa PlA2 polymorphism in siblings of patients with premature coronary heart disease. Arch Pathol Lab Med. 1999; 123(12): 1223-1229. doi: 10.5858/1999-123-1223-HPOGPA

23. Kucharska-Newton AM, Monda KL, Campbell S, Bradshaw PT, Wagenknecht LE, Boerwinkle E, et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: The Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis. 2011; 216(1): 151-156. doi: 10.1016/j.atherosclerosis.2011.01.038

24. Čeri A, Leniček Krleža J, Coen Herak D, Miloš M, Pavić M, Barišić N, et al. Role of platelet gene polymorphisms in ischemic pediatric stroke subtypes: A case-control study. Croat Med J. 2020; 61(1): 18-27. doi: 10.3325/cmj.2020.61.18

25. Ezer E, Schrick D, Tőkés-Füzesi M, Szapary L, Bogar L, Molnar T. A novel approach of platelet function test for prediction of attenuated response to clopidogrel. Clin Hemorheol Microcirc. 2019; 73(2): 359-369. doi: 10.3233/CH-190580

26. Al-Taee HZ, Alsabti ZM, Al-Ani LM. Genetic study of ITGA2 polymorphisms and impact on diabetic retinopathy risk in AlAnbar population. J Pharmaceut Sci Res. 2021; 10(9): 2305-2308. doi: 10.5281/zenodo.544911

27. Li W, Pi L, Yuan J, Gu X, Wang Z, Liu Y, et al. Impact of platelet glycoprotein Ia/IIa C807T gene polymorphisms on coronary artery aneurysms of KD patients. Cardiol Res Pract. 2021; 2021: 4895793. doi: 10.1155/2021/4895793


Review

For citations:


Osikov M.V., Antonov V.N., Zotov S.O. Role of ITGB3, GP1B1, and ITGA2 gene polymorphisms in platelet dysfunction in patients with COVID-19-associated lung damage. Acta Biomedica Scientifica. 2023;8(6):14-22. https://doi.org/10.29413/ABS.2023-8.6.2

Views: 506


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)