Preview

Acta Biomedica Scientifica

Advanced search

Segmentation of microscopic images of sputum stained by Ziehl - Nielsen using wavelet transform Mexican Hat

https://doi.org/10.12737/article_59e859d55cf612.51311447

Abstract

Background. Currently at bacterioscopic diagnosis of tuberculosis there is a large number of errors that is associated with a number of problems that can be solved by automated analysis of microscopic images of sputum. Automated image analysis usually consists of several stages: image segmentation and identification or recognition of objects in the image. The article examines the first of these stages - segmentation. The aim of the study was to investigate the possibility of segmenting a digital image of a microscopic preparation sputum, stained by the method of Ziehl - Nielsen, using wavelet transform Mexican Hat. Materials and methods. As research material we used 830 digital images obtained by microscopy of sputum smears stained by the method of Ziehl - Nielsen. For the automated segmentation of images we used two-dimensional wavelet transform of Mexican Hat Wavelet. Results. During the study we defined the optimal value of the a parameter, which is the only varying parameter of a wavelet Mexican Hat, and carried out the run-time evaluation of the wavelet transform digital microscopic images of sputum stained by the method of Ziehl - Nielsen. Conclusions. The conclusion is made about possibility of using two-dimensional wavelet transform Mexican Hat digital microscopic images of sputum stained by the method of Ziehl - Nielsen, for segmentation of these images.

About the Authors

A. N. Narkevich
Krasnoyarsk State Medical University
Russian Federation


K. A. Vinogradov
Krasnoyarsk State Medical University
Russian Federation


N. M. Koretskaya
Krasnoyarsk State Medical University
Russian Federation


V. O. Soboleva
Krasnoyarsk State Medical University
Russian Federation


References

1. Еремеева Н.И., Вахрушева Д.В. Эффективность выявления больных туберкулезом с бактериовыделением в клинико-диагностических лабораториях учреждений первичной медико-санитарной помощи Урала в 2010-2012 гг. // Туберкулез и болезни легких. - 2015. - № 7. - С. 40-42

2. Косых Н.Э., Смагин С.И., Гостюшкин В.В., Савин С.З., Литвинов К.А. Система автоматизированного компьютерного анализа медицинских изображений // Информационные технологии и вычислительные системы. - 2011. - № 3. - С. 51-56

3. Мезенцева Н.И., Евгущенко Г.В., Пузанов В.А., Попов С.А., Фрейман Г.Е. Оценка качества диагностики туберкулеза методами микроскопии в РФ за 2011-2014 гг. по результатам ФСВОК // Туберкулез и болезни легких. - 2015. - № 6. - С. 96-97

4. Мордык А.В., Пузырева Л.В., Аксютина Л.П. Современные международные и национальные концепции борьбы с туберкулезом // Дальневосточный журнал инфекционной патологии. - 2013. - № 22. - С. 92-97

5. Порев В.Н. Компьютерная графика. - СПб.: БХВ-Петербург, 2002. - 432 с

6. Сойфер В.А. Компьютерная обработка изображений. Часть 2. Методы и алгоритмы // Соросовский образовательный журнал. - 1996. - № 3. - С. 110-121

7. Филимонова Е.С., Тарасенко С.Л., Дыхно Ю.А., Хлебникова Ф.Б. Оценка эффективности цитологической диагностики злокачественных новообразований легких // Сибирское медицинское обозрение. - 2014. -№ 3. - С. 65-69

8. Чередниченко А.Г., Ревякина О.В., Петренко Т.И. Состояние лабораторной службы по диагностике туберкулеза в Сибирском и Дальневосточном федеральных округах // Туберкулез и болезни легких. -2014. - № 5. - С. 16-20

9. Agoston M.K. (2005). Computer graphics and geometric modeling: implementation and algorithms, London, 907 p.

10. Cazelles B., Cazelles K., Chavez M. (2013). Wavelet analysis in ecology and epidemiology: impact of statistical tests. J R Soc Interface, (91), 20130585.

11. Cheng R., Bai Y., Hu H., Tan X. (2015). Radial wavelet neural network with a novel self-creating disk-cell-splitting algorithm for license plate character recognition. Entropy (Basel), (6), 3857-3876.

12. Hsu C.Y., Lai Y.L., Chen C.C., Lee Y.T., Tseng K.K., Lai Y.K., Zheng C.Y., Jheng H.C. (2015). Time sequence image analysis of positron emission tomography using wavelet transformation. Technol Health Care, (24), 393-400.

13. Jin F., Feng D. (2014). Image registration algorithm using Mexican hat function-based operator and grouped feature matching strategy. PLoS One, (4), e95576.

14. Liu D., Wang S., Huang D., Deng G., Zeng F., Chen H. (2016). Medical image classification using spatial adjacent histogram based on adaptive local binary patterns. Comput Biol Med, (72), 185-200.

15. Megardon G., Tandonnet C., Sumner P., Guillaume A. (2015). Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli. Front Comput Neurosci, (9), 128.

16. Ou X., Pan W., Zhang X., Xiao P. (2016) Skin image retrieval using Gabor wavelet texture feature. Int J Cosmet Sci, (6), 607-614.

17. Xionga F., Oib X., Nattela S., Comtoisb P. (2015) Wavelet analysis of cardiac optical mapping data. Comput Biol Med, (65), 243-255.

18. Xu Z., Bagci U., Mansoor A., Kramer-Marek G., Luna B., Kubler A., Dey B., Foster B., Papadakis G.Z., Camp J.V., Jonsson C.B., Bishai W.R., Jain S., Udupa J.K., Mollura D.J. (2015). Computer-aided pulmonary image analysis in small animal models. Med Phys, (7), 3896-3910.


Review

For citations:


Narkevich A.N., Vinogradov K.A., Koretskaya N.M., Soboleva V.O. Segmentation of microscopic images of sputum stained by Ziehl - Nielsen using wavelet transform Mexican Hat. Acta Biomedica Scientifica. 2017;2(5(1)):141-146. (In Russ.) https://doi.org/10.12737/article_59e859d55cf612.51311447

Views: 717


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)