Preview

Acta Biomedica Scientifica

Advanced search

Features of peripheral blood cellular immunity parameters in patients with lung damage up to 30 % in COVID-19

https://doi.org/10.29413/ABS.2023-8.4.11

Abstract

Background. The stability of human organism for different kind of infection, including SARS-CoV-2 is significantly defined by the immune system. The mechanisms of the cellular immunity to the SARS-CoV-2 are not exactly defined and are under study.

The aim. To study the features of cell immunity parameters in patients with lung damage up to 30 % in COVID-19.

Material and methods. 73 people were examined during the 2020–2021 pandemic. The study group consisted of 31 patients with lung damage up to 30 % with COVID-19, the comparison group consisted of 42 people not infected with SARS-CoV-2. A complete clinical blood count was carried out using a Medonic M20 hematological analyzer (Boule Medical, Sweden), the level of lymphocyte subpopulations was determined using a FACS Calibur cytometer (BD, USA) and FITC- and phycoerythrin-labeled monoclonal antibodies (Sorbent, Russia). Differences were considered statistically significant at p < 0.05.

Results. Patients with COVID-19 with lung damage according to computed tomography (CT) ≤ 30 % before the treatment had a restructuring in the ratio of lymphocyte subpopulations in 67.7 % of cases. Lymphopenia (< 1.1 × 109 cells/l) was detected in 34.4 % of patients: a decrease in the absolute count of CD3+ lymphocytes by 30.8 %, CD3+CD4+ – by 35 %, CD3+CD8+ – by 6.7 % (p < 0.05), CD16+CD56+ natural killer (NK) cells – by 29.4 % (p = 0.009). The level of CD95+ lymphocytes in COVID-19 is 3.2 times higher than in healthy individuals. Elevated levels of HLA-DR+- (> 20 %) and CD3+ HLADR+ lymphocytes (> 6 %) are recorded in 60 % and 86.7 % of patients, respectively. Elevated levels of CD19+ B lymphocytes (> 17 %) in COVID-19 are 2.6 times more common than in healthy individuals. Correlation dependences of the count of NK cells with a wide range of T lymphocyte subpopulations were revealed.

Conclusion. Cellular immunity indicators in COVID-19 have a number of features that can serve as predictors of the progression of the severity of the disease.

About the Authors

E. A. Borodulina
Samara State Medical University
Russian Federation

Elena A. Borodulina – Dr. Sc. (Med.), Professor, Head of the Department of Phthisiology and Pulmonology 

Chapaevskaya str. 89, Samara 443099



Zh. P. Vasneva
Samara Diagnostic Center
Russian Federation

Zhanna P. Vasneva – Cand. Sc. (Biol.), Laboratory Assistant 

Myagi str. 7A, Samara 443093



E. S. Vdoushkina
Samara State Medical University
Russian Federation

Elizaveta S. Vdoushkina – Cand. Sc. (Med.), Associate Professor at the Department of Phthisiology and Pulmonology 

Chapaevskaya str. 89, Samara 443099



B. E. Borodulin
Samara State Medical University
Russian Federation

Boris E. Borodulin – Dr. Sc. (Med.), Professor at the Department of Phthisiology and Pulmonology 

Chapaevskaya str. 89, Samara 443099



L. V. Povalyaeva
Samara State Medical University
Russian Federation

Ljudmila V. Povalyaeva – Cand. Sc. (Med.), Associate Professor at the Department of Phthisiology and Pulmonology 

Chapaevskaya str. 89, Samara 443099



References

1. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China Intensive Care Med. 2020; 46(6): 1294-1297. doi: 10.1007/s00134-020-05991-x

2. Baazim H, Schweiger M, Moschinger M, Xu H, Scherer T, Popa A, et al. CD8+ T cells induce cachexia during chronic viral infection. Nat Immunol. 2019; 20(6): 701-710. doi: 10.1038/s41590-019-0397-y

3. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A datadriven analysis in the early phase of the outbreak. Int J Infect Dis. 2020; 92: 214-217. doi: 10.1016/j.ijid.2020.01.050

4. Golovkin A, Kalinina O, Bezrukikh V, Aquino A, Zaikova E, Karonova T, et al. Imbalanced immune response of T-cell and B-cell subsets in patients with moderate and severe COVID-19. Viruses. 2021; 13: 1966. doi: 10.3390/v13101966

5. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5): 541-543. doi: 10.1038/s41423-020-0401-3

6. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-432. doi: 10.1002/jmv.25685

7. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71(15): 762-768. doi: 10.1093/cid/ciaa248

8. Li YX, Wu W, Yang T, Zhou W, Fu YM, Feng QM, et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua Nei Ke Za Zhi. 2020; 59(5): 372-374. doi: 10.3760/cma.j.cn112138-20200221-00114

9. Borodulina EA, Vasneva ZhP, Sukhanova AE. Monitoring of immunological blood parameters in severe cases of a new coronavirus infection: Certificate of state registration of the database No. 2022620741. 04.05.2022. (In Russ.).

10. Borodulina EA, Vasneva ZhP, Vdoushkina ES, Borodulin BE, Povalyaeva LE. Features of hematological and hemostasiological parameters in coronavirus infection COVID-19 and community-acquired pneumonia. Acta biomedica scientifica. 2021; 6(1): 40-47. (In Russ.). doi: 10.29413/ABS.2021-6.1.6

11. Mitra A, Dwyre DM, Schivo M, Thompson GR, Cohen SH, Ku N, et al. Leukoerythroblastic reaction in a patient with COVID-19 infection. Am J Hematol. 2020; 95(8): 999-1000. doi: 10.1002/ajh.25793

12. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020; 395(10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7

13. Wang F, Hou H, Luo Y, Tang G, Wu Sh, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020; 5(10): e137799. doi: 10.1172/jci.insight.137799

14. Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020; 95(6): 131-134. doi: 10.1002/ajh.25774

15. Sizyakina LP, Zakurskaya VYa, Skripkina NA, Antonova EA. Ferritin level as a predictor of COVID-19 severe course. Immunologiya. 2021; 42(5): 518-525. (In Russ.). doi: 10.33029/0206-4952-2021-42-4-518-525

16. Gong F, Dai Y, Zheng T, Cheng L, Zhao D, Wang H, et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest. 2020; 130(12): 6588-6599. doi: 10.1172/JCI141054

17. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39: 529-539. doi: 10.1007/s00281-017-0629-x

18. Marzi A, Gramberg T, Simmons G. DC-SIGN and DCSIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004; 78: 12090-12095. doi: 10.1128/JVI.78.21.12090-12095.2004

19. Li X, Geng M, Peng Y. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102-108. doi: 10.1016/j.jpha.2020.03.001

20. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-422. doi: 10.1016/S2213-2600(20)30076-X

21. Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med. 2005; 171: 850-857. doi: 10.1164/rccm.200407-857OC

22. Cossarizza A, Biasi S, Guaraldi G, Girardis M, Mussini C, Modena COVID-19 Working Group (MoCo19). SARS-CoV-2, the virus that causes COVID-19: Cytometry and the new challenge for global health. Cytometry A. 2020; 97(4): 340-343. doi: 10.1002/cyto.a.24002

23. Tang NLS, Chan PKS, Wong CK, To KF, Wu AKL, Sung YM, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem. 2005; 51: 2333-2340. doi: 10.1373/clinchem.2005.054460

24. Amancha PK, Hong JJ, Ansari AA, Villinger F. Up-regulation of Tim-3 on T cells during acute simian immunodeficiency virus infection and on antigen specific responders. AIDS. 2015; 29(5): 531-536. doi: 10.1097/QAD.0000000000000589

25. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non-severe COVID-19. Nat Med. 2020; 26(4): 453-455. doi: 10.1038/s41591-020-0819-2

26. Zakurskaya VYa, Sizyakina LP, Kharitonova MV, Shlyk SV. Dynamics of specific humoral response in COVID-19 patients. Immunologiya. 2022; 43(1): 71-77. (In Russ.). doi: 10.33029/0206-4952-2022-43-1-71-77


Review

For citations:


Borodulina E.A., Vasneva Zh.P., Vdoushkina E.S., Borodulin B.E., Povalyaeva L.V. Features of peripheral blood cellular immunity parameters in patients with lung damage up to 30 % in COVID-19. Acta Biomedica Scientifica. 2023;8(4):101-108. https://doi.org/10.29413/ABS.2023-8.4.11

Views: 838


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)