Prospects for using CRISPR-Cas9 system in the treatment of human viral diseases
https://doi.org/10.29413/ABS.2023-8.1.5
Abstract
The aim. To analyze the possibility of using the genetic mechanisms of CRISPR-Cas9 technology in the prevention and treatment of certain viral diseases.
Materials and methods. The search for publications was carried out in Russian and foreign literature using the following search engines: RSCI, Cyberleninka, eLibrary, PubMed, Cochrane Library, etc. A review of domestic and international scientific papers on the research topic was carried out using search keywords: CRISPR, genetic engineering, genome editing, Cas9, sgRNA.
Results. A review of using CRISPR-Cas9 method (“genetic scissors”) as a gene therapy for some viral diseases was carried out, and its main advantages and disadvantages were revealed. An analysis of the data of scientific studies on genetic research methods over the past decade discovers the main aspects of CRISPR-Cas9 technology, modern classification and prospects for using this technology in clinical practice for the treatment and prevention of human viral diseases. The possibilities of creating a more versatile and stable version of the CRISPR-Cas9 technology are considered. Particular attention is paid to the technological difficulties and obstacles that scientists face when implementing this system for targeted use in clinical medicine.
Conclusion. One of the rapidly developing areas in science giving promising prospects for modern healthcare is genetic engineering, especially in cases where scientific developments are applied in clinical practice. The discovery of “genetic scissors” technology has revolutionized all medicine. Wide opportunities for developing new treatment methods for many viral diseases and creating conditions for their early prevention opened up for the medical community. In the future, with the introduction of this technology into clinical practice, it will become possible to treat diseases that have not previously responded to ongoing therapy and were considered incurable.
About the Authors
A. M. ZiganshinRussian Federation
Aydar M. Ziganshin – Cand. Sc. (Med.), Associate Professor at the Department of Obstetrics and Gynecology with the course of the Institute of Advanced Professional Education,
Lenina str. 3, Ufa 450008
A. R. Mulyukov
Russian Federation
Airat R. Mulykov – Student,
Lenina str. 3, Ufa 450008
M. A. Omarov
Russian Federation
Magomed A. Omarov – Student,
Lenina str. 3, Ufa 450008
V. A. Mudrov
Russian Federation
Viktor A. Mudrov – Cand. Sc. (Med.), Associate Professor at the Department of Obstetrics and Gynecology of the Faculties of Medicine and Dentistry,
Gorkogo str. 39A, Chita 672000
R. Sh. Khalitova
Russian Federation
Regina Sh. Khalitova – Postgraduate at the Department of Obstetrics and Gynecology with the course of the Institute of Advanced Professional Education,
Lenina str. 3, Ufa 450008
References
1. Ziganshin AM, Mulykov AR. Immunopathological mechanisms in sepsis of viral etiology in COVID-19. Siberian Medical Review. 2021; (6): 35-43. (In Russ.). doi: 10.20333/25000136-2021-6-35-43
2. Bellizzi A, Ahye N, Jalagadugula G, Wollebo HS. A broad application of CRISPR Cas9 in infectious diseases of central nervous system. J Neuroimmune Pharmacol. 2019; 14(4): 578-594. doi: 10.1007/s11481-019-09878-7
3. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018; 200(7): e00580-17. doi: 10.1128/ JB.00580-17
4. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006; 1: 7. doi: 10.1186/1745-6150-1-7
5. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nature Biotechnol. 2016; 34(9): 933- 941. doi: 10.1038/nbt.3659
6. Bollen Y, Post J, Koo BK, Snippert HJG. How to create state-of-the-art genetic model systems: Strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res. 2018; 46(13): 6435-6454. doi: 10.1093/nar/gky571
7. Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, et al. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther. 2021; 6(1): 238. doi: 10.1038/s41392-021-00645-w
8. Chen S, Lee B, Lee AY, Modzelewski AJ, He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem. 2016; 291(28): 14457-14467. doi: 10.1074/jbc.M116.733154
9. Tong S, Moyo B, Lee CM, Leong K, Bao G. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater. 2019; 4: 726-737. doi: 10.1038/s41578-019-0145-9
10. D’Agostino Y, D’Aniello S. Molecular basis, applications and challenges of CRISPR/Cas9: A continuously evolving tool for genome editing. Brief Funct Genomics. 2017; 16(4): 211-216. doi: 10.1093/bfgp/elw038
11. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnol. 2015; 33(5): 543-548. doi: 10.1038/nbt.3198
12. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol. 2020; 18(2): 67-83. doi: 10.1038/s41579-019-0299-x
13. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017; 550(7676): 407-410. doi: 10.1038/nature24268
14. Crystal RG. Adenovirus: The first effective in vivo gene delivery vector. Hum Gene Ther. 2014; 25(1): 3-11. doi: 10.1089/hum.2013.2527
15. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Med. 2019; 25(2): 249-254. doi: 10.1038/s41591-018-0326-x
16. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPRCas nucleases in human cells. Nat Biotechnol. 2013; 31(9): 822-826. doi: 10.1038/nbt.2623
17. Maartens G, Celum C, Lewin SR. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet. 2014; 384(9939): 258-271. doi: 10.1016/S0140-6736(14)60164-1
18. Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R, et al. Targeted HIV-1 latency reversal using CRISPR/Cas9- derived transcriptional activator systems. PLoS One. 2016; 11(6): e0158294. doi: 10.1371/journal.pone.0158294
19. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013; 3: 2510. doi: 10.1038/srep02510
20. Darcis G, Das AT, Berkhout B. Tackling HIV persistence: Pharmacological versus CRISPR-based shock strategies. Viruses. 2018; 10(4): 157. doi: 10.3390/v10040157
21. Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019; 10(1): 2753. doi: 10.1038/s41467-019-10366-y
22. Bella R, Kaminski R, Mancuso P, Young WB, Chen C, Sariyer R, et al. Removal of HIV DNA by CRISPR from patient blood engrafts in humanized mice. Mol Ther Nucleic Acids. 2018; 12: 275- 282. doi: 10.1016/j.omtn.2018.05.021
23. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014; 588(21): 3954-3958. doi: 10.1016/j.febslet.2014.09.008
24. Herrera-Carrillo E, Berkhout B. Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPRCas. Biochem Soc Trans. 2016; 44(5): 1355-1365. doi: 10.1042/BST20160060
25. Badia R, Ballana E, Castellví M, García-Vidal E, Pujantell M, Clotet B, et al. CD32 expression is associated to T-cell activation and is not a marker of the HIV-1 reservoir. Nature Communications. 2018; 9(1): 2739. doi: 10.1038/s41467-018-05157-w
26. Dufour C, Claudel A, Joubarne N, Merindol N, Maisonnet T, Masroori N, et al. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One. 2018; 13(1): e0191709. doi: 10.1371/journal.pone.0191709
27. Bogerd HP, Kornepati AV, Marshall JB, Kennedy EM, Cullen BR. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc Natl Acad Sci U S A. 2015; 112(52): E7249- E7256. doi: 10.1073/pnas.1516305112
28. Chou YY, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, et al. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep. 2016; 6: 36921. doi: 10.1038/srep36921
29. Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS One. 2015; 10(9): e0136046. doi: 10.1371/journal.pone.0136046
30. Bloom K, Maepa MB, Ely A, Arbuthnot P. Gene therapy for chronic HBV – Can we eliminate cccDNA? Genes (Basel). 2018; 9(4): 207. doi: 10.3390/genes9040207
31. Chang J, Guo JT. Treatment of chronic hepatitis B with pattern recognition receptor agonists: Current status and potential for a cure. Antiviral Res. 2015; 121: 152-159. doi: 10.1016/j.antiviral.2015.07.006
32. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015; 118: 110-117. doi: 10.1016/j.antiviral.2015.03.015
33. Chen YC, Sheng J, Trang P, Liu F. Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses. 2018; 10(6): 291. doi: 10.3390/v10060291
34. Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front Aging Neurosci. 2018; 10: 324. doi: 10.3389/fnagi.2018.00324
35. Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein – Barr virus: An important vaccine target for cancer prevention. Sci Transl Med. 2011; 3(107): 107fs7. doi: 10.1126/scitranslmed.3002878
36. Gergen J, Coulon F, Creneguy A, Elain-Duret N, Gutierrez A, Pinkenburg O, et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One. 2018; 13(2): e0192602. doi: 10.1371/journal.pone.0192602
37. Gravitt PE. Evidence and impact of human papillomavirus latency. Open Virol J. 2012; 6: 198-203. doi: 10.2174/1874357901 206010198
38. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int. 2014: 612823. doi: 10.1155/2014/612823
Review
For citations:
Ziganshin A.M., Mulyukov A.R., Omarov M.A., Mudrov V.A., Khalitova R.Sh. Prospects for using CRISPR-Cas9 system in the treatment of human viral diseases. Acta Biomedica Scientifica. 2023;8(1):40-50. https://doi.org/10.29413/ABS.2023-8.1.5