Роль аргинина и эндотелиальной синтазы оксида азота при заболевании метаболическим синдромом и COVID-19
Аннотация
В данном литературном обзоре представлена роль эндотелиальной синтазы оксида азота (еNO-синтазы) и оксида азота (NO), а также аргинина – субстрата фермента при заболевании метаболическим синдромом и COVID-19 (вирус SARS-CoV-2). Метаболический синдром представляет собой сочетание ожирения, инсулиновой резистентности, гипергликемии, дислипидемии и гипертонии. Показано, что у пожилых людей, пациентов с ожирением, метаболическим синдромом (МС), сахарным диабетом 2-го типа (СД2) и заболевших COVID-19 обнаруживается эндотелиальная дисфункция (ЭД) и активация эндотелия сосудов. ЭД является основной причиной ряда патологических состояний при развитии COVID-19 и ранее у больных МС, при этом выявляется резкое падение уровня оксида азота (NO) за счёт снижения экспрессии и активности еNO-синтазы и рассопряжения фермента, что приводит к нарушению целостности сосудов, то есть к сосудосуживающим, воспалительным и тромбозным состояниям с последующей ишемией органов и отёком тканей. Следует отметить, что МС, СД2, гипертония и ожирение, в частности, являются возрастными заболеваниями, и что с возрастом увеличивается уровень глюкозы крови, снижая биодоступность NO в эндотелиальных клетках. Дефекты метаболизма NO вызывают дисфункцию в лёгочных кровеносных сосудах и ткани лёгких, падает уровень NO, что приводит к нарушениям функции лёгких и коагулопатии. В обзоре приведены возможные механизмы этих нарушений, связанные с ЭД, рассопряжением еNO-синтазы, изменением фосфорилирования и регуляции активности фермента, а также при инсулиновой резистентности. Представлен современный взгляд на роль полиморфизма гена еNO-синтазы в развитии этих патологий. Для повышения уровня эндотелиального NO предлагаются препараты, которые регулируют биодоступность NO. К ним можно отнести аргинин, агонист NO – миноксидил, стероидные гормоны, статины, метформин. Однако необходимы дальнейшие исследования и клинические испытания при разработке стратегий лечения, повышающих уровни NO в эндотелии.
Об авторах
Л. А. КузнецоваРоссия
Кузнецова Людмила Александровна – доктор биологических наук, ведущий научный сотрудник лаборатории молекулярной эндокринологии и нейрохимии
194223, г. Санкт-Петербург, пр. Тореза, 44, Россия
Н. Е. Басова
Россия
Басова Наталия Евгеньевна – кандидат биологических наук, старший научный сотрудник лаборатории молекулярной эндокринологии и нейрохимии
194223, г. Санкт-Петербург, пр. Тореза, 44, Россия
Список литературы
1. Hayden MR. Endothelial activation and dysfunction in metabolic syndrome, type 2 diabetes and coronavirus disease 2019. J Int Med Res. 2020; 48(7): 0300060520939746. doi: 10.1177/0300060520939746
2. Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19. Nitric Oxide. 2020; 103: 1-3. doi: 10.1016/j.niox.2020.06.005
3. Assumpção CR, Brunini TM, Pereira NR, Godoy-Matos AF, Siqueira MA, Mann GE, et al. Insulin resistance in obesity and metabolic syndrome: Is there a connection with platelet l-arginine transport? Blood Cells Mol Dis. 2011; 45(4): 338-342. doi: 10.1016/j.bcmd.2010.10.003
4. Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009; 20(6): 295-302. doi: 10.1016/j.tem.2009.03.005
5. Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, et al. Metabolic syndrome and associated diseases: from the bench to the clinic. Toxicol Sci. 2018; 162(1): 36-42. doi: 10.1093/toxsci/kfx233
6. Guimarães LMF, Rossini CVT, Lameu C. Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide. 2021; 111-112: 64-71. doi: 10.1016/j.niox.2021.04.003
7. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020; 107: 154217. doi: 10.1016/j.metabol.2020.154217
8. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020; 39(5): 405-407. doi: 10.1016/j.healun.2020.03.012
9. Pieretti JC, Rubilar O, Weller RB, Tortella GR, Seabra AB. Nitric oxide (NO) and nanoparticles – Potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res. 2021; 291: 198202. doi: 10.1016/j.virusres.2020.198202
10. Zamanian RT, Pollack CV Jr, Gentile MA. Outpatient inhaled nitric oxide in a patient with vasoreactive IPAH and COVID-19 infection. Am J Respir Crit Care Med. 2020; 202(1): 130-132. doi: 10.1164/rccm.202004-0937LE
11. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, et al. Arginine and endothelial function. Biomedicines. 2020; 8(8): 277. doi: 10.3390/biomedicines8080277
12. Durante W. Targeting arginine in COVID-19-induced immunopathology and vasculopathy. Metabolites. 2022; 12(3): 240. doi: 10.3390/metabo12030240
13. Adusumilli NC, Zhang D, Friedman JM, Friedman AJ. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide. 2020; 103: 4-8. doi: 10.1016/j.niox.2020.07.003
14. Fang W, Jiang J, Su L, Shu T, Liu H, Lai S, et al. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med. 2021; 163: 153-162. doi: 10.1016/j.freeradbiomed.2020.12.008
15. Notsu Y, Yano S, Shibata H, Nagai A, Nabika T. Plasma arginine/ADMA ratio as a sensitive risk marker for atherosclerosis: Shimane CoHRE study. Atherosclerosis. 2015; 239(1): 61-66. doi: 10.1016/j.atherosclerosis.2014.12.030
16. Pizzarelli F, Maas R, Dattolo P, Tripepi G, Michelassi S, D’Arrigo G, et al. Asymmetric dimethylarginine predicts survival in the elderly. Age (Dordr). 2013; 35(6): 2465-2475. doi: 10.1007/s11357-013-9523-1
17. Stuehr DJ, Haque MM. Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol. 2019; 176(2):
18. -188. doi: 10.1111/bph.14533
19. Steinberg D. The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part IV: the 1984 coronary primary prevention trial ends it – almost. J Lipid Res. 2006; 47(1): 1-14. doi: 10.1194/jlr.R500014-JLR200
20. Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial dysfunction in obesity-induced inflammation: Molecular mechanisms and clinical implications. Biomolecules. 2020; 10(2): 291. doi: 10.3390/biom10020291
21. Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020; 9(5): 1417. doi: 10.3390/jcm9051417
22. Alem MM. Endothelial dysfunction in chronic heart failure: Assessment, findings, significance, and potential therapeutic targets. Int J Mol Sci. 2019; 20(13): 3198. doi: 10.3390/ijms20133198
23. Shu Х, Keller TC 4th, Begandt D, Butcher J, Biwer L, Keller AS, et al. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015; 72(23): 4561-4575. doi: 10.1007/s00018-015-2021-0
24. Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of /NOS3/ polymorphisms. Gene. 2016; 575 (2 Pt 3): 584-599. doi: 10.1016/j.gene.2015.09.061
25. Ogita H, Liao J. Endothelial function and oxidative stress.Endothelium. 2004; 11(2): 123-132. doi: 10.1080/10623320490482664
26. Sener A, Best LC, Yates AP, Kadiata MM, Olivares E, Louchami K, et al. Stimulus-secretion coupling of arginine-induced insulin release: Comparison between the cationic amino acid and its methyl ester. Endocrine. 2000; 13(3): 329-340. doi: 10.1385/ENDO:13:3:329
27. Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: Molecular interrelationship and therapeutic implications. Diabetol Metab Syndr. 2021; 13(1): 23. doi: 10.1186/s13098-021-00639-2
28. Little PJ, Askew CD, Xu S, Kamato D. Endothelial dysfunction and cardiovascular disease: History and analysis of the clinical utility of the relationship. Biomedicines. 2021; 9(6): 699. doi: 10.3390/biomedicines9060699
29. Maruhashi Y, Higashi Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants (Basel). 2021; 10(8): 1306. doi: 10.3390/antiox10081306
30. Apicella M, Campopiano MC, Mantuano M, Mazoni L, Copelli A, Del Prato S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020; 8(9): 782-792. doi: 10.1016/S2213-8587(20)30238-2
31. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020; 28(7): 1195-1199. doi: 10.1002/oby.22831
32. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann Intern Med. 2020; 173(4): 268-277. doi: 10.7326/M20-2003
33. Zhao L. Obesity accompanying COVID-19: The role of epicardial fat. Obesity (Silver Spring). 2020; 28(8): 1367. doi: 10.1002/oby.22867
34. Nagy E, Jermendy AL, Merkely B, Maurovich-Horvat P. Clinical importance of epicardial adipose tissue. Arch Med Sci. 2017; 13(4): 864-874. doi: 10.5114/aoms.2016.63259
35. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of non-alcoholic fatty liver dis ease – meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64(1): 73-84. doi: 10.1002/hep.28431
36. Donato AJ, Machin DR, Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circ Res. 2018; 123(7): 825-848. doi: 10.1161/CIRCRESAHA.118.312563
37. Nanda A, Vura NVRK, Gravenstein S. COVID-19 in older adults. Aging Clin Exp Res. 2020; 32(7): 1199-1202. doi: 10.1007/s40520-020-01581-5
38. Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complicat. 2020; 34(9): 107637. doi: 10.1016/j.jdiacomp.2020.107637
39. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020; 17(9): 543-558. doi: 10.1038/s41569-020-0413-9
40. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19. doi: 10.1016/j.vph.2017.05.005
41. Li H, Tian S, Chen T, Cui Z, Shi N, Zhong X, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020; 22(10): 1897-1906. doi: 10.1111/dom.14099
42. Hoshiyama M, Li B, Yao J, Harada T, Morioka T, Oite T. Effect of high glucose on nitric oxide production and endothelial nitric oxide synthase protein expression in human glomerular endothelial cells. Nephron Exp Nephrol. 2003; 95(2): e62-e68. doi: 10.1159/000073673
43. Guan SP, Seet RCS, Kennedy BK. Does eNOS derived nitric oxide protect the young from severe COVID-19 complications? Ageing Res Rev. 2020; 64: 101201. doi: 10.1016/j.arr.2020.101201
44. Cai H, Liu D, Garcia JGN. Cam kinase II-dependent pathophysiological signaling in endothelial cells. Cardiovasc Res. 2008; 77(1): 30-34. doi: 10.1093/cvr/cvm010
45. Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal. 2013; 18(9): 1078-1099. doi: 10.1089/ars.2012.4824
46. McCabe TJ, Fulton D, Roman LJ, Sessa W. Enhanced electron flux and reduced calmodulin dissociation may explain ‘calcium-independent’ eNOS activation by phosphorylation. J Biol Chem. 2000; 275(9): 6123-6128. doi: 10.1074/jbc.275.9.6123
47. Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kauda Y, Nishio Y, et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2001; 276(5): 3459-3467. doi: 10.1074/jbc.M005036200
48. Dragoni S, Caridi B, Karatsai E, Burgoyne T, Sarker MH, Turowski P. AMP-activated protein kinase is a key regulator of acute neurovascular permeability. J Cell Sci. 2021; 134(7): jcs253179. doi: 10.1242/jcs.253179
49. Scotland RS, Morales-Ruiz M, Chen Y, Yu J, Rudic RD, Fulton D, et al. Functional reconstitution of endothelial nitric oxide synthase reveals the importance of serine 1179 in endothelium-dependent vasomotion. Circ Res. 2002; 90(8): 904-910. doi: 10.1161/01.res.0000016506.04193.96
50. Кузнецова Л.А. Метаболический синдром: влияние адипокинов на L-аргинин – NО-синтаза – NO сигнальный путь. Acta biomedica scientifica. 2021; 6(2): 22-40. doi: 10.29413/ABS.2021-6.2.3
51. Tenopoulou M, Doulias PS. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res. 2020; 9: F1000 Faculty Rev-1190. doi: 10.12688/f1000research.19998.1
52. Kim JA, Montagnani M, Koh KK, Ouon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation. 2006. 113(15): 1888-1904. doi: 10.1161/CIRCULATIONAHA.105.563213
53. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: Role of protein kinases. Am J Physiol Cell Physiol. 2003; 285(3): C499-C508. doi: 10.1152/ajpcell.00122.2003
54. Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest. 2006; 116(7): 1813-1822. doi: 10.1172/JCI29024
55. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865): 799-806. doi: 10.1038/414799a
56. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, et al. Insulin resistance differentially affects the PI3-kinase- and map kinase-mediated signaling in human muscle. J Clin Invest. 2000; 105(3): 311-320. doi: 10.1172/JCI7535
57. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005; 96(9): 939-949. doi: 10.1161/01.RES.0000163635.62927.34
58. Serné EH, Jongh RT, Eringa EC, Jserman RGI, Stehouwer CDA. Microvascular dysfunction: A potential pathophysiological role in the metabolic syndrome. Hypertension. 2007; 50(1): 204-211. doi: 10.1161/HYPERTENSIONAHA.107.089680
59. Garcia V, Sessa WC. Endothelial NOS: Perspective and recent developments. Br J Pharm. 2019. 176(2): 189-196. doi: 10.1111/bph.14522
60. Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase B in airway innate immunity. World J Biol Chem. 2020; 11(2): 30-51. doi: 10.4331/wjbc.v11.i2.30
61. Fulton DJ. Transcriptional and posttranslational regulation of eNOS in the endothelium. Adv Pharmacol. 2016; 77: 29-64. doi: 10.1016/bs.apha.2016.04.001
62. Фаттахов Н.С., Василенко М.А., Скуратовская Д.А., Куликов Д.И., Кириенкова Е.В., Затолокин П.А. и др. Патогенетическое значение однонуклеотидного полиморфизма C774T гена эндотелиальной NO-синтазы в развитии метаболического синдрома. Биомедицинская химия. 2016; 62(4): 447-452. doi: 10.18097/PBMC20166204447
63. Lee YC, Huang SP, Liu CC, Yang YH, Yen HC, Li WM, et al. The association of eNOS G894T polymorphism with metabolic syndrome and erectile dysfunction. J Sex Med. 2012; 9(3): 837-843. doi: 10.1111/j.1743-6109.2011.02588.x
64. Pehlivan S, Köse M, Mese S, Serin J, Senkal N, Oyacı Y, et al. Investigation of MBL2 and NOS3 functional gene variants in suspected COVID-19 PCR (–) patients. Pathog Glob Health. 2022; 116(3): 178-184. doi: 10.1080/20477724.2021.1984726
65. Cooke GE, Doshi A, Binkley PF. Endothelial nitric oxide synthase gene: Prospects for treatment of heart disease. Pharmacogenomics. 2007; 8(12): 1723-1734. doi: 10.2217/14622416.8.12.1723.
66. Pereira TV, Rudnicki M, Cheung BM, Baum L, Yamada Y, Oliveira PS, et al. Three endothelial nitric oxide (NOS3) gene polymorphisms in hypertensive and normotensive individuals: Meta-analysis of 53 studies reveals evidence of publica tion bias. J Hypertens. 2007; 25(9): 1763-1774. doi: 10.1097/HJH.0b013e3281de740d
67. Tanus-Santos JE, Casella-Filho A. Endothelial nitric oxide synthase polymorphisms and susceptibility to hypertension: Genotype versus haplotype analysis. Hypertension. 2007; 49(1): E1; author reply E2. doi: 10.1161/01.HYP0000251106.80955.38
68. Thomas BN, Thakur TJ, Yi L, Guindo A, Diallo DA, Ott J. Extensive ethnogenomic diversity of endothelial nitric oxide synthase (eNOS) polymorphisms. Gene Regul Syst Bio. 2013; 7: 1-10. doi: 10.4137/GRSB.S10857
69. Kumar R, Nejatizadeh A, Arif E, Akhtar S, Gupta M, Tyagi S, et al. Multi-locus interactions of vascular homeostasis genes in essential hypertension: a gender-based study. Clin Chim Acta. 2009; 405(1-2): 87-93. doi: 10.1016/J.cca.2009.04.010
70. Goel S, Jain T, Hooda A, Malhotra R, Johal G, Masoomi R, et al. Clinical characteristics and in-hospital mortality for COVID-19 across the globe. Cardiol Ther. 2020; 9(2): 553-559. doi: 10.1007/S40119-020-00189-0
71. Wiltshire E, Peña AS, MacKenzie K, Shaw G, Couper J. High dose folic acid is a potential treatment for pulmonary hypertension, including when associated with COVID-19 pneumonia. Med Hypotheses. 2020; 143: 110142. doi: 10.1016/j.mehy.2020.110142
Рецензия
Для цитирования:
Кузнецова Л.А., Басова Н.Е. Роль аргинина и эндотелиальной синтазы оксида азота при заболевании метаболическим синдромом и COVID-19. Acta Biomedica Scientifica. 2022;7(6):51-70. https://doi.org/10.29413/ABS.2022-7.6.6
For citation:
Kuznetsova L.A., Basova N.E. The role of arginine and endothelial nitric oxide synthase in the pathogenesis of Covid-19 complicated by metabolic syndrome. Acta Biomedica Scientifica. 2022;7(6):51-70. (In Russ.) https://doi.org/10.29413/ABS.2022-7.6.6