Preview

Acta Biomedica Scientifica

Advanced search

Olfatory HLA-associated mechanism of formation of married couples in the development of congenital heart diseases in children

https://doi.org/10.29413/ABS.2022-7.6.3

Abstract

Taking into account the significance of the HLA complex in the inflammatory and immune responses, we can assume that the potential for limiting or developing pathology in the next generation will be determined at the stage of selection of certain alleles in the spousal genotype.
The aim. To study the role of HLA assortativity in couples with healthy children and couples with children with congenital heart diseases (CHD) through the prism of immunogenetic mechanisms of mutual olfactory choice.
Materials and methods. We studied the distribution of HLA-DRB1 alleles in married couples with healthy children and with children having CHD. To identify the associations of HLA-DRB1 alleles with odor preferences, we also studied the group included young males and females. HLA-DRB1 gene typing was carried out in all participants.
Results. The combination of HLA-DRB1 alleles in couples with healthy children was similar to the combination of these alleles in the mutual olfactory sympathy between unfamiliar young males and females. Allele combinations in the spouses from the experimental group differ from the group of random selection. The frequency of matches for HLA-DRB1 alleles in married couples with children having CHD without was significantly higher than in the control group.
Conclusion. The first stage of selection, associated with olfactory selection, is aimed to the whole population, and it is significantly manifested in the control group (married couples with healthy children). At the same time, in the experimental group (couples with children having CHD), some deviations from the main selection were discovered. Generally, specific HLA-DRB1 allele combinations obtained on the basis of olfactory assessments, indicate the involvement of HLA molecules in pheromone reception.

About the Authors

A. A. Chuyanova
Kemerovo State University
Russian Federation

Anna A. Chuyanova – Cand. Sc. (Biol.), Associate Professor at the Department of Genetics and Fundamental Medicine

 Krasnaya str. 6, Kemerovo 650000, Russian Federation 



A. V. Sinitskaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anna V. Sinitskaya – Cand. Sc. (Biol.), Research Officer at the Laboratory of Genomic Medicine

 Sosnoviy blvd 6, Kemerovo 650002, Russian Federation 



N. A. Litvinova
Kemerovo State Medical University
Russian Federation

Nadezhda A. Litvinova – Dr. Sc. (Biol.), Professor, Professor at the Department of Normal Physiology

Voroshilova str. 22a, Kemerovo 650029, Russian Federation 

 



References

1. Moshkin M, Litvinova N, Litvinova EA, Bedareva A, Lutsyuk A, Gerlinskaya L. Scent recognition of infected status in humans. J Sex Med. 2012; 9(12): 3211-3218. doi: 10.1111/j.1743-6109.2011.02562.x

2. Wyatt TD. Introduction to chemical signaling in vertebrates and invertebrates. In: Mucignat-Caretta C (ed.). Neurobiology of chemical communication. Boca Raton (FL): CRC Press/Taylor & Francis; 2014.

3. Mazzatenta A, De Luca C, Di Tano A, Cacchio M, Di Giulio C, Pokorski M. Swelling of erectile nasal tissue induced by human sexual pheromone. Adv Exp Med Biol. 2016; 885: 25-30. doi: 10.1007/5584_2015_190

4. De Groot JHB, Semin GR, Smeets MAM. On the communicative function of body odors. Perspect Psychol Sci. 2017; 12(2): 306-324. doi: 10.1177/1745691616676599

5. Milinski M, Croy I, Hummel T, Boehm T. Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proc Biol Sci. 2013; 280(1755): 20122889. doi: 10.1098/rspb.2012.2889

6. Chaix R, Cao C, Donnelly P. Is mate choice in humans MHCdependent? PLoS Genet. 2008; 4(9): e1000184. doi: 10.1371/journal.pgen.1000184

7. Wedekind C, Penn D. MHC genes, body odours, and odour preferences. Nephrol Dial Transplant. 2000; 15(9): 1269-1271. doi: 10.1093/ndt/15.9.1269

8. Chuyanova AA, Tsepokina AV, Shabaldin AV, Litvinova NA, Zubrikova KYu, Boldyreva MN. Features olfactory screening for HLA-DRB1 among unrelated donors of different sex. Immunologiya. 2015; 36(2): 90-95. (In Russ.).

9. Khaitov RM, Alexeev LP, Kofiadi IA. Role of immunogenetics in addressing fundamental and applied tasks of personalized medicine. Medicine of Extreme Situations. 2016; 3(57): 9-24. (In Russ.).

10. Alekseev LP, Iazdovskiĭ VV, Khaitov RM. Interethnic differences in the genetic control of the human immune status. Russian Journal of Physiology. 2000; 86(3): 280-284. (In Russ.).

11. Boldyreva МN, Haitov RM, Bartseva ОВ, Guzov II, Barkov IYu, Pomerantseva EI, et al. A study of the HLA-DRB1-genes action in miscarriage of uncertain genesis. Immunologiya. 2004; 25(1): 4-8. (In Russ.).

12. Alecsandru D, García-Velasco JA. Immunology and human reproduction. Curr Opin Obstet Gynecol. 2015; 27(3): 231-234. doi: 10.1097/GCO.0000000000000174

13. Meisgen S, Östberg T, Salomonsson S, Ding B, Eliasson H, Mälarstig A, et al. The HLA locus contains novel foetal susceptibility alleles for congenital heart block with significant paternal influence. J Intern Med. 2014; 275(6): 640-651. doi: 10.1111/joim.12179

14. Hoang TT, Goldmuntz E, Roberts AE, Chung WK, Kline JK, Deanfield JE, et al. The congenital heart disease genetic network study: Cohort description. PloS One. 2018; 13(1): e0191319. doi: 10.1371/journal.pone.0191319

15. Liu Z, Yu Y, Li X, Wu A, Mu M, Li N, et al. Maternal lead exposure and risk of congenital heart defects occurrence in offspring. Reprod Toxicol. 2015; 51: 1-6. doi: 10.1016/j.reprotox.2014.11.002

16. Feng Y, Wang S, Chen R, Tong X, Wu Z, Mo X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: A meta-analysis of epidemiological observational studies. Sci Rep. 2015; 5: 8506. doi: 10.1038/srep08506

17. Singh A, Khatuja R, Verma M. Background, epidemiology and definition of recurrent pregnancy loss. In: Recurrent Pregnancy Loss. 2018: 3-12. doi: 10.1007/978-981-10-7338-0_1

18. Bodis G. Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheum Ther. 2018; 5(1): 5-20. doi: 10.1007/s40744-018-0100-z

19. Aimagambetova G, Hajjej A, Malalla ZH, Finan RR, Sarray S, Almawi WY. Maternal HLA‐DR, HLA‐DQ, and HLA‐DP loci are linked with altered risk of recurrent pregnancy loss in Lebanese women: A case‐control study. Am J Reprod Immunol. 2019; 82(4); e13173. doi: 10.1111/aji.13173

20. Tsepokina AV, Shabaldin AV, Shmulevich SA, Deeva NS, Ponasenko AV, Shabaldina EV. Features of the inheritance of HLADRB1 alleles in families having children with congenital heart defects. Journal of Medical and Biological Research. 2020; 8(2): 166-173. (In Russ.).

21. Wysocki CJ, Yamazaki K, Curran M, Wysocki LM, Beauchamp GK. Mice (Mus musculus) lacking a vomeronasal organ can discriminate MHC-determined odortypes. Horm Behav. 2004; 46(3): 241-246. doi: 10.1016/j.yhbeh.2004.02.010

22. Preti G, Wysocki CJ, Barnhart KT, Sondheimer SJ, Leyden JJ. Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biol Reprod. 2003; 68(6): 2107-2113. doi: 10.1095/biolreprod.102.008268

23. Moshkin MP, Gerlinskaya LA, Kolosova IE, Litvinova NA, Saval LA, Berezina MG. Scent attractiveness and endocrine status in male students before and during a stress situation. Russian Journal of Physiology. 2006; 92(10): 1250-1259. (In Russ.)

24. Zanelli E, Breedveld FC, de Vries RR. HLA class II association with rheumatoid arthritis: Facts and interpretations. Hum Immunol. 2000; 61(12): 1254-1261. doi: 10.1016/s0198-8859(00)00185-3

25. Gregersen PK. Genetics of rheumatoid arthritis: confronting complexity. Arthritis Res. 1999; 1: 37-44. doi: 10.1186/ar9

26. Schipper RF, Koeleman BP, Bruining GJ, Schreuder GM, Verduijn W, De Vries RR, et al. HLA class II associations with type 1 diabetes mellitus: A multivariate approach. Tissue Antigens. 2001; 57(2): 144-150. doi: 10.1034/j.1399-0039.2001.057002144.x

27. Santos JL, Pérez-Bravo F, Carrasco E, Calvillán M, Albala C. Association between HLA-DQB1 alleles and type 1 diabetes in a case-parents study conducted in Santiago, Chile. Am J Epidemiol. 2001; 153(8): 794-798. doi: 10.1093/aje/153.8.794

28. Meuleman T, Lashley LE, Dekkers OM, van Lith JM, Claas FH, Bloemenkamp KW. HLA associations and HLA sharing in recurrent miscarriage: A systematic review and meta-analysis. Hum Immunol. 2015; 76(5): 362-373. doi: 10.1016/j.humimm.2015.02.004

29. Grimstad F, Krieg S. Immunogenetic contributions to recurrent pregnancy loss. J Assist Reprod Genet. 2016; 33(7): 833-847. doi: 10.1007/s10815-016-0720-6

30. Craenmehr MC, van Egmond A, Haasnoot GW. Reciprocal HLA-DR allogenicity between mother and child affects pregnancy outcome parameters. J Reprod Immunol. 2019; 133: 15-17. doi: 10.1016/j.jri.2019.04.002

31. Kutteh WH, Stovall DW, Schust DJ. Immunology and reproduction. In: Yen and Jaffe’s Reproductive Endocrinology. 2019: 301-321.e3. doi: 10.1016/B978-0-323-47912-7.00013-5

32. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015; 14(2): 174-180. doi: 10.1016/j.autrev.2014.10.016

33. Bove R, Chua AS, Xia Z. Complex relation of HLADRB1*1501, age at menarche, and age at multiple sclerosis onset. Neurology Genetics. 2016; 2(4): 88. doi: 10.1212/NXG.0000000000000088

34. Michalik J, Čierny D, Kantorová E, Kantárová D, Juraj J, Párnická Z, et al. The association of HLA-DRB1 and HLA-DQB1 alleles with genetic susceptibility to multiple sclerosis in the Slovak population. Neurol Res. 2015; 37(12): 1060-1067. doi: 10.1080/01616412.2015.1115212

35. Urrutia I, Martínez R, López-Euba T, Velayos T, Martínez de LaPiscina I, Bilbao JR, et al. Lower frequency of HLA-DRB1 type 1 diabetes risk alleles in pediatric patients with MODY. PLoS One. 2017; 12(1): e0169389. doi: 10.1371/journal.pone.0169389

36. Ramgopal S, Rathika C, Padma MR, Murali V, Arun K, Kamaludeen MN, et al. Interaction of HLA-DRB1 alleles and CTLA4 (+49 AG) gene polymorphism in autoimmune thyroid disease. Gene. 2018; 642: 430-438. doi: 10.1016/j.gene.2017.11.057

37. Bodis G, Toth V, Schwarting A. Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheum Ther. 2018; 5(1): 5-20. doi: 10.1007/s40744-018-0100-z

38. Lie HC, Simmons LW, Rhodes G. Genetic dissimilarity, genetic diversity, and mate preferences in humans. Evol Hum Behav. 2010; 31(1): 48-58. doi: 10.1016/j.anbehav.2009.12.040

39. Ziegler A, Kentenich H, Uchanska-Ziegler B. Female choice and the MHC. Trends Immunol. 2005; 26(9): 496-502. doi: 10.1016/j.it.2005.07.003

40. Sultana S, Shamima MN, Jesmin S, Zahan N, Zahid MA, Hossain MA, et al. Thyroid autoimmunity is a risk factor for recurrent pregnancy loss. TAJ: Journal of Teachers Association. 2017; 30(1): 49-55. doi: 10.3329/TAJ.V30I1.39123

41. Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, et al. Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med. 2005; 201(1): 11-17. doi: 10.1084/jem.20041859

42. Zaretskaya YuM. Clinical immunogenetics. Moscow: Meditsina; 1983. (In Russ.).

43. Mallia JV, Das DK, Maitra A. Role of HLA in human pregnancy. Int J Hum Genet. 2012; 12(1): 33-36. doi: 10.1080/09723757.2012.11886159


Review

For citations:


Chuyanova A.A., Sinitskaya A.V., Litvinova N.A. Olfatory HLA-associated mechanism of formation of married couples in the development of congenital heart diseases in children. Acta Biomedica Scientifica. 2022;7(6):22-33. (In Russ.) https://doi.org/10.29413/ABS.2022-7.6.3

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)