Some pharmacogenetic aspects of the ABCB1 gene in lopinavir / ritonavir concentration variability in children with HIV infection: A pilot study
https://doi.org/10.29413/ABS.2022-7.5-1.7
Abstract
Polymorphic variants of the multidrug resistance gene (ABCB1 or MDR1) are associated with changes in the absorption and transport of drugs in the body. One of the substrates of the ABCB1 transporter is an antiretroviral drug from the class of protease inhibitors, lopinavir.
The aim. To research the effect of polymorphic variants C1236T and C3435T in the ABCB1 gene on the plasma concentration of lopinavir / ritonavir in children and adolescents living with HIV infection.
Methods. The genotypes of polymorphic variants of the ABCB1 gene were identified in 136 HIV infected children and adolescents; median age – 10 [7–12] years. The plasma concentration of lopinavir / ritonavir was measured from blood taken during the next scheduled appointment as part of dispensary observation at the Irkutsk Regional AIDS Centre using high performance liquid chromatography.
Results. The average duration of lopinavir/ritonavir use as part of an antiretroviral therapy was 55 months. Median viral load in patients was 1 [1–2.03] log 10 copies/ mL; the number of CD4 + T cells – 38.36 %. The frequency of occurrence of the 3435T and 1236T alleles of the ABCB1 gene was ~50 %. In carriers of the 3435TT genotype, the median lopinavir concentrations 2 and 12 hours after drug intake were 5050.8 [3615.8–5847.7] and 2665.5 [216–4896.3] ng/mL, respectively. In carriers of the 1236TT genotype, median lopinavir concentrations 2 and 12 hours after drug intake were 4913.5 [3355.1–5733.7] and 3290.6 [159.1–4972.5] ng/mL, respectively.
Conclusions. The study did not reveal a significant relationship between the carriage of the C3435T and C1236T genotypes of the ABCB1 gene and the concentrations of lopinavir and ritonavir 2 and 12 hours after drug intake.
About the Authors
A. Yu. SambyalovaRussian Federation
Aleksandra Yu. Sambyalova – Junior Research Officer at the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
T. A. Bairova
Russian Federation
Tatiana A. Bairova – Dr. Sc. (Med.), Head of the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
T. L. Manaenkova
Russian Federation
Tatiana L. Manaenkova – Postgraduate, Scientific Сentre for Family Health and Human Reproduction Problems; Infectiologist, Irkutsk Regional AIDS Centre
Timiryazeva str., 16, Irkutsk 664003
Spartakovskaya str. 11, Irkutsk 664035
A. V. Belskikh
Russian Federation
Aleksey V. Belskikh – Cand. Sc. (Chem.), Engineer at the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
E. V. Belyaeva
Russian Federation
Elena V. Belyaeva – Cand. Sc. (Biol.), Research Officer at the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
O. A. Ershova
Russian Federation
Oksana A. Ershova – Cand. Sc. (Biol.), Research Officer at the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
D. V. Kumratov
Russian Federation
Dmitry V. Kumratov – Laboratory Assistant at the Laboratory of Personalized Medicine
Timiryazeva str., 16, Irkutsk 664003
A. I. Paramonov
Russian Federation
Aleksey I. Paramonov – Research Assistant at the Group of Genomic Studies and Bioinformation Analysis
Timiryazeva str., 16, Irkutsk 664003
Yu. K. Plotnikova
Russian Federation
Yulia K. Plotnikova – Cand. Sc. (Med.), Head Physician
Spartakovskaya str. 11, Irkutsk 664035
L. V. Kolomeets
Russian Federation
Larisa V. Kolomeets – Infectiologist
Spartakovskaya str. 11, Irkutsk 664035
L. V. Rychkova
Russian Federation
Lyubov V. Rychkova – Dr. Sc. (Med.), Professor, Corresponding Member of RAS, Director
Timiryazeva str., 16, Irkutsk 664003
References
1. UNAIDS. Global HIV & AIDS statistics. Fact sheet. URL: https://www.unaids.org/ru/resources/fact-sheet [date of access: 10. 01. 2021]. (In Russ.).
2. Federal AIDS Centre of the Central Research Institute of Epidemiology. HIV infection in the Russian Federation in 2019. URL: http://aids-centr.perm.ru/images/hiv_in_rf_30.06.2021.pdf [date of access: 10. 01. 2022]. (In Russ.).
3. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. Geneva: World Health Organization; 2017.
4. Saag M. S., Benson C. A., Gandhi R. T., Hoy J. F., Landovitz R. J., Mugavero M. J., et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the International Antiviral Society – USA Panel. JAMA. 2018; 320 (4): 379-396. doi: 10.1001/jama.2018.8431
5. Petrova A., Vaniarkina A., Plotnikova J., Rychkova L., Moskaleva E. Impact of combined antiretroviral prophylaxis on health outcomes in HIV exposed neonates. Arch Dis Child. 2019; 104 (S3): R.A4. doi: 10.1136/archdischild-2019-epa.9
6. Rashidova M. A., Sholokhov L. F., Marianian A. Yu., Kolesnikova L. I. HIV and pregnancy: Realities of XXI century. Siberian Scientific Medical Journal. 2022; 42 (2): 10-17. (In Russ.). doi: 10.18699/SSMJ20220202
7. Leshchenko O. Y., Genich E. V. Reproductive disorders and their pathogenetic mechanisms in women with HIV. HIV Infection and Immunosuppressive Disorders. 2019; 11 (4): 20-29. (In Russ.). doi: 10.22328/2077-9828-2019-11-4-20-29
8. Sigaloff K. C., Calis J. C., Geelen S. P., van Vugt M., de Wit T. F. HIV-1-resistance-associated mutations after failure of first-line antiretroviral treatment among children in resource-poor regions: A systematic review. Lancet Infect Dis. 2011; 11 (10): 769-779. doi: 10.1016/S1473-3099(11)70141-4
9. Zhao Y., Mu W., Harwell J., Zhou H., Sun X., Cheng Y., et al. Drug resistance profiles among HIV-1-infected children experiencing delayed switch and 12-month efficacy after using second-line antiretroviral therapy: An observational cohort study in rural China. J Acquir Immune Defic Syndr. 2011; 58 (1): 47-53. doi: 10.1097/QAI.0b013e318229f2a2
10. Sambyalova A. Yu., Bairova T. A., Manaenkova T. L., Rychkova L. V. The role of pharmacogenetics in efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection. Acta biomedica scientifica. 2021; 6 (6-2): 113-124. (In Russ.). doi: 10.29413/ABS.2021-6.6-2.12
11. Relling M. V., Evans W. E. Pharmacogenomics in the clinic. Nature. 2015; 526 (7573): 343-350. doi: 10.1038/nature15817
12. National Association of Specialists in the Prevention, Diagnosis and Treatment of HIV Infection. HIV infection in children: clinical guidelines. Moscow; 2020. (In Russ.).
13. Cianfriglia M., Dupuis M. L., Molinari A., Verdoliva A., Costi R., Galluzzo C. M., et al. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein. Retrovirology. 2007; 4: 17. doi: 10.1186/1742-4690-4-17
14. Albermann N., Schmitz-Winnenthal F. H., Z’graggen K., Volk C., Hoffmann M. M., Haefeli W. E., et al. Expression of the drug transporters MDR1 / ABCB1, MRP1 / ABCC1, MRP2 / ABCC2, BCRP / ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol. 2005; 70 (6): 949-958. doi: 10.1016/j.bcp.2005.06.018
15. Ford J., Hoggard P. G., Owen A., Khoo S. H., Back D. J. A simplified approach to determining P-glycoprotein expression in peripheral blood mononuclear cell subsets. J Immunol Methods. 2003; 274 (1-2): 129-137. doi: 10.1016/s0022-1759(02)00509-4
16. Coelho A. V., Silva S. P., de Alencar L. C., Stocco G., Crovella S., Brandão L. A., et al. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J Clin Pharmacol. 2013; 53 (12): 1286-1293. doi: 10.1002/jcph.165
17. Fellay J., Marzolini C., Meaden E. R., Back D. J., Buclin T., Chave J. P., et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: A pharmacogenetics study. Lancet. 2002; 359 (9300): 30-36. doi: 10.1016/S0140-6736(02)07276-8
18. Brumme Z. L., Dong W. W., Chan K. J., Hogg R. S., Montaner J. S., O’Shaughnessy M. V., et al. Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS. 2003; 17 (2): 201-208. doi: 10.1097/00002030-200301240-00010
19. Hitzl M., Drescher S., van der Kuip H., Schäffeler E., Fischer J., Schwab M., et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics. 2001; 11 (4): 293-298. doi: 10.1097/00008571-200106000-00003
20. Ma Q., Brazeau D., Zingman B. S., Reichman R. C., Fischl M. A., Gripshover B. M., et al. Multidrug resistance 1 polymorphisms and trough concentrations of atazanavir and lopinavir in patients with HIV. Pharmacogenomics. 2007; 8 (3): 227-235. doi: 10.2217/14622416.8.3.227
21. Bairova T. A., Atalyan A. V., Manaenkova T. L., Sambyalova A. Yu., Belskikh A. V., Rychkova L. V., et al. Pharmacogenetics of antiretroviral therapy in children and adolescents: Certificate on the registration of the database No. 2021621961 of the Russian Federation. 2021. (In Russ.).
22. Bairova T. A., Nemchinova N. V., Belyaeva Е. V., Sambyalova A. Yu., Ershova O. A., Rychkova L. V. The prevalence of polymorphic variants of ABCB1 gene among indigenous populations of Siberia. Russian Journal of Genetics. 2022; 58 (1): 68-75. (In Russ.). doi: 10.31857/S0016675821110023
23. Sychev D. A., Shuev G. N., Suleymanov S. S., Ryzhikova K. A., Mirzaev K. B., Grishina E. A., et al. Comparison of CYP2C9, CYP2C19, CYP2D6, ABCB1, and SLCO1B1 gene-polymorphism frequency in Russian and Nanai populations. Pharmgenomics Pers Med. 2017; 10: 93-99. doi: 10.2147/PGPM.S129665
24. Kim R. B., Leake B. F., Choo E. F., Dresser G. K., Kubba S. V., Schwarz U. I., et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001; 70 (2): 189-199. doi: 10.1067/mcp.2001.117412
25. Hoffmeyer S., Burk O., von Richter O., Arnold H. P., Brockmöller J., Johne A., et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000; 97 (7): 3473-3478. doi: 10.1073/pnas.97.7.3473
26. Leschziner G. D., Andrew T., Pirmohamed M., Johnson M. R. ABCB1 genotype and PGP expression, function and therapeutic drug response: A critical review and recommendations for future research. Pharmacogenomics J. 2007; 7 (3): 154-179. doi: 10.1038/sj.tpj.6500413
27. Estrela R. de C., Ribeiro F. S., Barroso P. F., Tuyama M., Gregório S. P., Dias-Neto E., et al. ABCB1 polymorphisms and the concentrations of lopinavir and ritonavir in blood, semen and saliva of HIV-infected men under antiretroviral therapy. Pharmacogenomics. 2009; 10 (2): 311-318. doi: 10.2217/14622416.10.2.311
28. Winzer R., Langmann P., Zilly M., Tollmann F., Schubert J., Klinker H., et al. No influence of the P-glycoprotein genotype (MDR1 C3435T) on plasma levels of lopinavir and efavirenz during antiret-roviral treatment. Eur J Med Res. 2003; 8 (12): 531-534.
29. Rakhmanina N. Y., Neely M. N., Van Schaik R. H., Gordish-Dressman H. A., Williams K. D., Soldin S. J., et al. CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Ther Drug Monit. 2011; 33 (4): 417-424. doi: 10.1097/FTD.0b013e318225384f
30. Liu X., Ma Q., Zhao Y., Mu W., Sun X., Cheng Y., et al. Impact of single nucleotide polymorphisms on plasma concentrations of efavirenz and lopinavir/ritonavir in Chinese children infected with the human immunodeficiency virus. Pharmacotherapy. 2017; 37 (9): 1073-1080. doi: 10.1002/phar.1988
31. Bellusci C. P., Rocco C., Aulicino P., Mecikovsky D., Curras V., Hegoburu S., et al. Influence of MDR1 C1236T polymorphism on lopinavir plasma concentration and virological response in HIV-1-infected children. Gene. 2013; 522 (1): 96-101. doi: 10.1016/j.gene.2013.03.020
Review
For citations:
Sambyalova A.Yu., Bairova T.A., Manaenkova T.L., Belskikh A.V., Belyaeva E.V., Ershova O.A., Kumratov D.V., Paramonov A.I., Plotnikova Yu.K., Kolomeets L.V., Rychkova L.V. Some pharmacogenetic aspects of the ABCB1 gene in lopinavir / ritonavir concentration variability in children with HIV infection: A pilot study. Acta Biomedica Scientifica. 2022;7(5-1):53-61. (In Russ.) https://doi.org/10.29413/ABS.2022-7.5-1.7