Preview

Acta Biomedica Scientifica

Advanced search

Gene expression in farm poultry under the influence of T-2 toxin and the use of biological preparations

https://doi.org/10.29413/ABS.2022-7.3.19

Abstract

Background. Feed-borne T-2 toxin may inhibit innate immune system function in birds.
The aim. To evaluate the effect of T-2 toxin, artificially introduced with feed, on the expression level of a number of immunity-related genes in the tissues of the broiler digestive system.
Materials and methods. The experiments were carried out in the vivarium of the FSC “VNITIP” RAS broilers of the Smena 8 cross from 33 to 47-day old. Experimental contamination of feed T-2 toxin was performed. The birds were divided into 4 groups of 5 animals each: I – control, receiving a diet without the introduction of T-2 toxin, II experimental – receiving a diet with the addition of T-2 toxin, III experimental – receiving a diet with the addition of T-2 toxin and the sorbent Zaslon2+, IV experimental – receiving a diet with the addition of T-2 toxin, the same sorbent Zaslon2+and Axtra Pro enzyme. The level of mRNA expression was analyzed by quantitative reverse transcription PCR.
Results. The data obtained indicated the impact of T-2 toxin contamination of broiler feed on the modulation of the level of expression of genes associated with the functioning of the immune system in the cecum and pancreas. Exposure to T-2 toxin (group II) led to an increase in the expression of the pro-inflammatory gene IL-6 in the tissues of the caecum by 10.8 times and IL-8 in the pancreas by 3.89 times (p ≤ 0.05) compared with control group I. The effect of the sorbent, as well as the complex, including the sorbent and the enzyme, on the expression of broiler genes was positive. The sorbent without the enzyme showed greater efficiency than with the additional introduction of the enzyme.

About the Authors

E. A. Yildirim
LLC Biotrof; Saint Petersburg State Agrarian University 
Russian Federation

 Dr. Sc. (Biol.), Chief Biotechnologist at the Molecular Genetic Laboratory, ; Professor at the Department of Large Animal Husbandry

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint Petersburg, Pushkin 196601, Russian Federation 



A. A. Grozina
All-Russian Research and Technological Poultry Institute of Russian Academy of Sciences 
Russian Federation

 Cand. Sc. (Biol.), Chief Research Officer, Head of the Department of Physiology and Biochemistry

 Ptitsegradskaya str. 10, Sergiev Posad 141311, Russian Federation 



L. A. Ilina
LLC Biotrof; Saint Petersburg State Agrarian University 
Russian Federation

 Cand. Sc. (Biol.), Head of the Molecular Genetic Laboratory; Associate Professor at the Department of Large Animal Husbandry

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint Petersburg, Pushkin 196601, Russian Federation 



V. A. Filippova
LLC Biotrof; Saint Petersburg State Agrarian University 
Russian Federation

Biotechnologist at the Molecular Genetic Laboratory; Head of the Laboratory of the Department of Large Animal Husbandry

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint Petersburg, Pushkin 196601, Russian Federation 



G. Y. Laptev
LLC Biotrof; Saint Petersburg State Agrarian University
Russian Federation

 Dr. Sc. (Biol.), Head; Professor at the Department of Large Animal Husbandry

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint Petersburg, Pushkin 196601, Russian Federation 



E. S. Ponomareva
LLC Biotrof
Russian Federation

 Biotechnologist at the Molecular Genetic Laboratory

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation



A. V. Dubrowin
LLC Biotrof
Russian Federation

 Cand. Sc. (Vet.), Biotechnologist at the Molecular Genetic Laboratory

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation



K. A. Kalitkina
LLC Biotrof; Saint Petersburg State Agrarian University 
Russian Federation

 Biotechnologist at the Molecular Genetic Laboratory; Student at the Department of Large Animal Husbandry

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation

Petersburgskoye highway 2, Saint Petersburg, Pushkin 196601, Russian Federation 



V. V. Molotkov
LLC Biotrof
Russian Federation

 Sales Manager

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation



D. A. Akhmatchin
LLC Biotrof
Russian Federation

 Sales Manager

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation



D. G. Tiurina
LLC Biotrof 
Russian Federation

 Cand. Sc. (Econ.), Deputy Director for Finances

Malinovskaya str. 8, lit. A, Saint Petersburg, Pushkin 196602, Russian Federation 



References

1. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011; 15(2): 129-144. doi: 10.1016/j.jscs.2010.06.006

2. Fink-Gremmels J, Georgiou NA. Risk assessment of mycotoxins for the consumer. In: Ennen G, Kuiper HA, Valentin A (eds). Residues of veterinary drugs and mycotoxins in animal products. NL-Wageningen Press; 1996: 159-174.

3. Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy AA, Kaushik NK, et al. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget. 2017; 8(20): 33933-33952. doi: 10.18632/oncotarget.15422

4. Kalantari H, Zong MS, Chang IM. Assay of T-2 toxin contamination in domestic and imported agricultural products in Korea. Proc Jpn Assoc Mycotoxicol. 1989; 1989(30): 32-34. doi: 10.2520/myco1975.1989.30_32

5. Krska R, Malachova A, BerthILler F, Egmond HPV. Determination of T-2 and HT-2 toxins in food and feed: An update. World Mycotoxin J. 2014; 7(2): 131-142. doi: 10.3920/WMJ2013.1605

6. Kononenko GP, Burkin AA, Zotova EV. Mycotoxicological monitoring. Message 3. Feed products from the processing of grain raw materials. Veterinary Science Today. 2020; 3(34): 213-219. (In Russ.). doi: 10.29326/2304-196X-2020-3-34-213-219

7. Akande KE, Abubakar MM, Adegbola TA, Bogoro SE. Nutritional and health implications of mycotoxins in animal feeds: A review. Pak J Nutr. 2006; 5(5): 398-403.

8. Oswald IP, Marin DE, Bouhet S, Pinton P, Taranu I, Accensi F. Immunotoxicological risk of mycotoxins for domestic animals. Food Addit Contam. 2005, 22(4): 354-360. doi: 10.1080/02652030500058320

9. Seeboth J, Solinhac R, Oswald IP, Guzylack-Piriou L. The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Vet Res. 2012; 43: 35(2012). doi: 10.1186/1297-9716-43-35

10. Pierron A, Alassane-Kpembi I, Oswald IP. Impact of mycotoxin on immune response and consequences for pig health. Anim Nutr. 2016; 2(2): 63-68. doi: 10.1016/j.aninu.2016.03.001

11. Wan Q, Wu G, He Q, Tang H, Wang Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. Mol Biosyst. 2015; 11(3): 882-891. doi: 10.1039/c4mb00622d

12. Grenier B, Applegate TJ. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins. 2013; 5(2): 396-430. doi: 10.3390/toxins5020396

13. Casteleyn C, Doom M, Lambrechts E, Van den Broeck W, Simoens P, Cornillie P. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: A review. Avian Pathol. 2010; 39(3): 143-150. doi: 10.1080/03079451003786105

14. Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: A review. Toxins (Basel). 2014; 6(5): 1615-1643. doi: 10.3390/toxins6051615

15. Pang VF, Adams JH, Beasley VR, Buck WB, Haschek WM. Myocardial and pancreatic lesions induced by T-2 toxin, a trichothecene mycotoxin, in swine. Vet Pathol. 1986; 23(3): 310-319. doi: 10.1177/030098588602300312

16. Obremski K, Podlasz P, Żmigrodzka M, Winnicka A, Woźny M, Brzuza P, et al. The effect of T-2 toxin on percentages of CD4+, CD8+, CD4+CD8+ and CD21+ lymphocytes, and mRNA expression levels of selected cytokines in porcine ileal Peyer’s patches. Pol J Vet Sci. 2013; 16(2): 341-349. doi: 10.2478/pjvs-2013-0046

17. Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh SH. A review on mycotoxins in food and feed: Malaysia case study. Com pr Rev Food Sci Food Saf. 2013; 12(6): 629-651. doi: 10.1111/1541-4337.12029

18. Hritzo Ahye MK, Golding A. Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE. Lupus Sci Med. 2018; 5(1): e000296. doi: 10.1136/lupus-2018-000296

19. Bijl M, Horst G, Limburg PC, Kallenberg CG. Fas expression on peripheral blood lymphocytes in systemic lupus erythematosus (SLE): Relation to lymphocyte activation and disease activity. Lupus. 2001; 10(12): 866-872. doi: 10.1191/096120301701548517

20. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020; 26(7): 1070-1076. doi: 10.1038/s41591-020-0944-y

21. Jones D, Como CN, Jing L, Blackmon A, Neff CP, Krueger O, et al. Varicella zoster virus productively infects human peripheral blood mononuclear cells to modulate expression of immunoinhibitory proteins and blocking PD-L1 enhances virus-specific CD8+ T cell effector function. PLoS Pathog. 2019; 15(3): e1007650. doi: 10.1371/journal.ppat.1007650

22. Guilford FT, Hope J. Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel). 2014; 6(2): 608-623. doi: 10.3390/toxins6020608

23. Li Y, Zhang J, Wu Y, Liu G, Song L, Li Y, et al. High-sensitive chemiluminescent immunoassay investigation and application for the detection of T-2 toxin and major metabolite HT-2 toxin. J Sci Food Agric. 2017; 97(3): 818-822. doi: 10.1002/jsfa.7801

24. Liu YL, Meng G.Q, Wang HR, Zhu HL, Hou YQ, Wang WJ, et al. Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mouldcontaminated feed. Br Poult Sci. 2011; 52(2): 255-263. doi: 10.1080/00071668.2011.559453

25. Tozaki H, Emi Y, Horisaka E, Fujita T, Yamamoto A, Muranishi S. Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: Implications in peptide delivery to the colon. J Pharm Pharmacol. 1997; 49(2): 164-168. doi: 10.1111/j.2042-7158.1997.tb06773.x

26. European Convention for the Protection of Vertebrate Animals used for Experimental or Other Scientific Purposes (ETS No. 123). Strasbourg; 1986. URL: https://rm.coe.int/168007a6a8 [date of access: 15.02.2022]. (In Russ.)

27. Egorov IA, Manukyan VA, Lenkova TN, Okolelova TM, Lukashenko VS, Shevyakov AN, et al. Methods for conducting scientific and industrial research on feeding poultry. Molecular genetic methods for determining the intestinal microflora. Sergiev Posad; 2013. (In Russ.).

28. Zeka F, Vanderheyden K, Smet E, Cuvelier C, Mestdagh P, Vandesompele J. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Sci Rep. 2016; 6: 21418. doi: 10.1038/srep21418

29. Meza Cerda MI, Gray R, Higgins DP. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. Peer J. 2020; 8: e10306. doi: 10.7717/peerj.10306

30. Laptev GY, Filippova VA, Kochish II, Yildirim EA, Ilina LA, Dubrovin AV, et al. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals (Basel). 2019; 9(9): 615. doi: 10.3390/ani9090615

31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001;25(4): 402-408. doi: 10.1006/meth.2001.1262

32. Yildyrym EA, Grozina AA, Vertiprakhov VG, Ilyina LA, Filippova VA, Laptev GYu, et al. Expression of immune-associated genes in tissues blind processes of the intestine and pancreas of broiler chickens (Gallus Gallus L.) with experimental T-2 toxicosis. Sel’skokhozyaistvennaya biologiya. 2021; 56(4): 664-681. (In Russ.). doi: 10.15389/agrobiology.2021.4.664rus

33. Liu SD, Song MH, Yun W, Lee JH, Kim HB, Cho JH. Effect of carvacrol essential oils on immune response and inflammationrelated genes expression in broilers challenged by lipopolysaccharide. Poult Sci. 2019; 98(5): 2026-2033. doi: 10.3382/ps/pey575

34. Lotze ATM. The cytokine handbook. 4th ed. Academic Press; 2003.

35. Broom LJ, Kogut MH. Inflammation: friend or foe for animal production? Poultry Science. 2018; 97(2): 510-514. doi: 10.3382/ps/pex314

36. Jiang XR, Awati A, Agazzi A, Vitari F, Ferrari A, Bento H, et al. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Аnimal. 2015; 9(3): 417-426. doi: 10.1017/S1751731114002444

37. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996; 87(2): 171. doi: 10.1016/s0092-8674(00)81334-3

38. Zhivotovsky B, Burgess DH, Orrenius S. Proteases in apoptosis. Experientia. 1996; 52(10-11): 968-978. doi: 10.1007/BF01920106

39. Wu B, Guo H, Cui H, Peng X, Fang J, Zuo Z, et al. Pathway underlying small intestine apoptosis by dietary nickel chloride in broiler chickens. Chemic Biol Interact. 2016; 243: 91-106. doi: 10.1016/j.cbi.2015.11.010

40. van Dijk A, Veldhuizen EJA, Haagsman HP. Avian defensins. Vet Immunol Immunopathol. 2008; 124(1-2): 1-18. doi: 10.1016/j.vetimm.2007.12.006

41. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999; 286(5439): 525-528. doi: 10.1126/science.286.5439.525

42. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol. 2002; 14(4): 421-426. doi: 10.1093/intimm/14.4.421

43. Veldhuizen EJA, Hendriks HG, Hogenkamp A, van Dijk A, Gaastra W, Tooten PCJ, et al. Differential regulation of porcine β-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I. Vet Immunol Immunopathol. 2006; 114(1-2): 94-102. doi: 10.1016/j.vetimm.2006.07.012

44. Elahi S, Buchanan RM, Attah-Poku S, Townsend HGG, Babiuk LA, Gerdts V. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets. Infect Immun. 2006; 74(4): 2338-2352. doi: 10.1128/IAI.74.4.2338-2352.2006

45. Zhang G, Hiraiwa H, Yasue H, Wu H, Ross CR, Troyer D, et al. Cloning and characterization of the gene for a new epithelial α-defensin. J Biol Chem. 1999; 274(34): 24031-24037. doi: 10.1074/jbc.274.34.24031

46. Veldhuizen EJA., Rijnders M, Claassen EA, van Dijk A, Haagsman HP. Porcine α-defensin 2 displays broad antimicrobial activity against pathogenic intestinal bacteria. Mol Immunol. 2008; 45(2): 386-394. doi: 10.1016/j.molimm.2007.06.001


Review

For citations:


Yildirim E.A., Grozina A.A., Ilina L.A., Filippova V.A., Laptev G.Y., Ponomareva E.S., Dubrowin A.V., Kalitkina K.A., Molotkov V.V., Akhmatchin D.A., Tiurina D.G. Gene expression in farm poultry under the influence of T-2 toxin and the use of biological preparations. Acta Biomedica Scientifica. 2022;7(3):180-189. (In Russ.) https://doi.org/10.29413/ABS.2022-7.3.19

Views: 893


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)