Preview

Acta Biomedica Scientifica

Advanced search

The role of pharmacogenetics in Efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection.

https://doi.org/10.29413/ABS.2021-6.6-2.12

Abstract

Antiretroviral therapy has markedly reduced morbidity and mortality for persons living with human immunodeficiency virus (HIV). HIV can now be classified as a chronic disease; until a cure is found, patients are likely to require life-long therapy. However, despite these undoubted advances, there are many issues that need to be resolved, including the problems associated with long-term efficacy and toxicity. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. There is considerable interindividual variability in patient outcomes in terms of drug disposition, drug efficacy and adverse events. The basis of these differences is multifactorial, but host genetics are believed to play a significant part. HIV-infected population consists of ethnically diverse individuals on complex and potentially toxic antiretroviral regimens on a long-term basis. These individuals would benefit greatly from predictive tests that identify the most durable regimens. Pharmacogenetics holds that promise. Thus, detailed understanding of the metabolism and transport of antiretrovirals and the influence of genetics on these pathways is important. To this end, this review provides an up-to-date overview of the metabolism of antiHIV therapeutics of the protease inhibitors Lopinavir and Ritonavir and the impact of genetic variation in drug metabolism and transport on the treatment of HIV.

About the Authors

A. Yu. Sambyalova
Scientific Сentre for Family Health and Human Reproduction Problems
Russian Federation

 Junior Research Officer at the Laboratory of Personalized Medicine

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



T. A. Bairova
Scientific Сentre for Family Health and Human Reproduction Problems
Russian Federation

 Dr. Sc. (Med.), Head of the Laboratory of Personalized Medicine 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



T. L. Manaenkova
Scientific Сentre for Family Health and Human Reproduction Problems
Russian Federation

 Postgraduate 

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



L. V. Rychkova
Scientific Сentre for Family Health and Human Reproduction Problems
Russian Federation

 Dr. Sc. (Med.), Corresponding Member of the RAS, Director

Timiryazeva str. 16, Irkutsk 664003, Russian Federation 



References

1. UNAIDS. Global HIV & AIDS statistics – Fact sheet. URL: https://www.unaids.org/en/resources/fact-sheet [date of access: 28.12.2020].

2. Federal Scientific and Methodological Centre for the Prevention and Control of HIV/AIDS. HIV infection in the Russian Federation as of June 30, 2021. URL: http://aids-centr.perm.ru/images/

3. hiv_in_rf_30.06.2021.pdf [date of access: 10.01.2021]. (In Russ.)

4. TEMPRANO ANRS 12136 Study Group, Danel C, Moh R, Gabillard D, Badje A, Le Carrou J, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med. 2015; 373(9): 808-822. doi: 10.1056/NEJMoa1507198

5. INSIGHT START Study Group, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015; 373(9): 795-807. doi: 10.1056/NEJMoa1506816

6. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med. 2016; 375(9): 830-839. doi: 10.1056/NEJMoa1600693

7. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, van Lunzen J, et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy. JAMA. 2016; 316(2): 171-181. doi: 10.1001/jama.2016.5148

8. Petrova A, Vaniarkina A, Plotnikova J, Rychkova L, Moskaleva E. Impact of combined antiretroviral prophylaxis on health outcomes in HIV exposed neonates. Arch Dis Child. 2019; 104(S3): A4. doi: 10.1136/archdischild-2019-epa.9

9. Shugaeva S, Petrova A, Vaniarkina A, Rychkova L. Health problems in neonates with perinatal HIV exposure. Arch Dis Child. 2019; 104(S3): A143. doi: 10.1136/archdischild-2019-epa.329

10. Laskey SB, Siliciano RF. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat Rev Microbiol. 2014; 12(11): 772-780. doi: 10.1038/nrmicro3351

11. Vella S, Schwartländer B, Sow SP, Eholie SP, Murphy RL. The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS. 2012; 26(10): 1231-1241. doi: 10.1097/QAD.0b013e32835521a3

12. Mattevi VS, Tagliari CF. Pharmacogenetic considerations in the treatment of HIV. Pharmacogenomics. 2017; 18(1): 85-98. doi: 10.2217/pgs-2016-0097

13. Neary M, Owen A. Pharmacogenetic considerations for HIV treatment in different ethnicities: an update. Expert Opin Drug Metab Toxicol. 2017; 13(11): 1169-1181. doi: 10.1080/17425255.2017.1391214

14. National Association of HIV Prevention, Diagnosis and Treatment Specialists. Clinical recommendations. 2017. URL: http://rushiv.ru/category/docs/national-recs/kr-17/ [date of access: 10.01.2021]. (In Russ.).

15. Lundgren J, Mocroft A, Ryom L. Contemporary protease inhibitors and cardiovascular risk. Curr Opin Infect Dis. 2018; 31(1): 8-13. doi: 10.1097/QCO.0000000000000425

16. Desai S, Landay A. Early immune senescence in HIV disease. Curr HIV/AIDS Rep. 2010; 7(1): 4-10. doi: 10.1007/s11904-009-0038-4

17. FDA. HIV and AIDS: Medicines to help you. Protease inhibitors. URL: https://www.fda.gov/consumers/free-publicationswomen/hiv-and-aids-medicines-help-you#protease [date of access: 20.01.2021].

18. Hirani VN, Raucy JL, Lasker JM. Conversion of the HIV protease inhibitor nelfinavir to a bioactive metabolite by human liver CYP2C19. Drug Metab Dispos. 2004; 32(12): 1462-1467. doi: 10.1124/dmd.104.001743

19. Hughes PJ, Cretton-Scott E, Teague A, Wensel TM. Protease inhibitors for patients with HIV-1 infection: A comparative overview. P T. 2011; 36(6): 332-345.

20. Moyle GJ, Back D. Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med. 2001; 2(2): 105-113. doi: 10.1046/j.1468-1293.2001.00063.x

21. Greenblatt DJ. Mechanisms and consequences of drugdrug interactions. Clin Pharmacol Drug Dev. 2017; 6(2): 118-124. doi: 10.1002/cpdd.339

22. Greenblatt DJ, Harmatz JS. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug-drug interaction studies. Br J Clin Pharmacol. 2015; 80(3): 342-350. doi: 10.1111/bcp.12668

23. National Association of HIV Prevention, Diagnosis and Treatment Specialists. HIV infection in children: Clinical recommendations. 2020. URL: http://rushiv.ru/wp-content/uploads/2021/05/KR-459-1.pdf [date of access: 20.03.2021]. (In Russ.).

24. Barlow-Mosha L, Angelidou K, Lindsey J, Archary M, Cotton M, Dittmer S, et al. Nevirapine- versus lopinavir/ritonavir-based antiretroviral therapy in HIV-infected infants and young children: Long-term follow-up of the IMPAACT P1060 Randomized Trial. Clin Infect Dis. 2016; 63(8): 1113-1121. doi: 10.1093/cid/ciw488

25. World Health Organization. Consolidated guideline on use of antiretroviral drugs for treating and preventing HIV infection: Recommendation for a public health approach, second edition. Geneva; 2016. URL: http://apps.who.int/iris/bitstream/10665/208825/1/9789241549684_eng.pdf [date of access: 20.02.2021].

26. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs. 2003; 63(8): 769-802. doi: 10.2165/00003495-200363080-00004

27. Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses. 1992; 8(2): 153-164. doi: 10.1089/aid.1992.8.153

28. European Medicines Agency. KaletraÒ (lopinavir/ritonavir) soft capsules. Summary of product characteristics. URL: http://emc.medicines.org [date of access: 26.02.2021].

29. Eron JJ, Feinberg J, Kessler HA, Horowitz HW, Witt MD, Carpio FF, et al. Once-daily versus twice-daily lopinavir/ritonavir in antiretroviral-naive HIV-positive patients: A 48-week randomized clinical trial. J Infect Dis. 2004; 189(2): 265-272. doi: 10.1086/380799

30. Sham HL, Betebenner DA, Herrin T, Kumar G, Saldivar A, Vasavanonda S, et al. Synthesis and antiviral activities of the major metabolites of the HIV protease inhibitor ABT-378 (Lopinavir). Bioorg Med Chem Lett. 2001; 11(11): 1351-1353. doi: 10.1016/s0960-894x(01)00243-8

31. Cattaneo D, Cossu MV, Rizzardini G. Pharmacokinetic drug evaluation of ritonavir (versus cobicistat) as adjunctive therapy in the treatment of HIV. Expert Opin Drug Metab Toxicol. 2019; 15(11): 927-935. doi: 10.1080/17425255.2019.1685495

32. Barragan P, Podzamczer D. Lopinavir/ritonavir: A protease inhibitor for HIV-1 treatment. Expert Opin Pharmacother. 2008; 9(13): 2363-2375. doi: 10.1517/14656566.9.13.2363

33. Oldfield V, Plosker GL. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs. 2006; 66(9): 1275-1299. doi: 10.2165/00003495-200666090-00012

34. Vogel M, Rockstroh JK. Safety of lopinavir/ritonavir for the treatment of HIV-infection. Expert Opin Drug Saf. 2005; 4(3): 403-420. doi: 10.1517/14740338.4.3.403

35. Arab-Alameddine M, Décosterd LA, Buclin T, Telenti A, Csajka C. Antiretroviral drug toxicity in relation to pharmacokinetics, metabolic profile and pharmacogenetics. Expert Opin Drug Metab Toxicol. 2011; 7(5): 609-622. doi: 10.1517/17425255.2011.562891

36. Berno G, Zaccarelli M, Gori C, Tempestilli M, Antinori A, Perno CF, et al. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: Potential implications for the metabolism of HIV drugs. BMC Med Genet. 2014; 15: 76. doi: 10.1186/1471-2350-15-76

37. da Rocha IM, Gasparotto AS, Lazzaretti RK, Notti RK, Sprinz E, Mattevi VS. Polymorphisms associated with renal adverse effects of antiretroviral therapy in a Southern Brazilian HIV cohort. Pharmacogenet Genomics. 2015; 25(11): 541-547. doi: 10.1097/FPC.0000000000000169

38. Martinec O, Huliciak M, Staud F, Cecka F, Vokral I, Cerveny L. Anti-HIV and anti-hepatitis C virus drugs inhibit P-glycoprotein efflux activity in Caco-2 cells and precision-cut rat and human intestinal slices. Antimicrob Agents Chemother. 2019; 63(11): e00910-e00919. doi: 10.1128/AAC.00910-19

39. Coelho AV, Silva SP, de Alencar LC, Stocco G, Crovella S, Brandão LAC, et al. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J Clin Pharmacol. 2013; 53(12): 1286-1293. doi: 10.1002/jcph.165

40. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave JP, et al. Response to antiretroviral treatment in HIV‐1‐infected individuals with allelic variants of the multidrug resistance transporter 1: A pharmacogenetics study. Lancet. 2002; 359(9300): 30-36. doi: 10.1016/S0140-6736(02)07276-8

41. Brumme ZL, Dong WW, Chan KJ, Hogg RS, Montaner JSG, O’Shaughnessy MV, et al. Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS. 2003; 17(2): 201-208. doi: 10.1097/00002030-200301240-00010

42. Hitzl M, Drescher S, van der Kuip H, Schäffeler E, Fischer J, Schwab M, et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics. 2001; 11(4): 293-298. doi: 10.1097/00008571-200106000-00003

43. Ma Q, Brazeau D, Zingman BS, Reichman RC, Fischl MA, Gripshover BM, et al. Multidrug resistance 1 polymorphisms and trough concentrations of atazanavir and lopinavir in patients with HIV. Pharmacogenomics. 2007; 8(3): 227-235. doi: 10.2217/14622416.8.3.227

44. Rakhmanina NY, Neely M, Van Schaik RHN, Gordish-Dressman HA, Williams KD, Soldin SJ, et al. CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir-ritonavir in HIV-infected children. Ther Drug Monit. 2011; 33: 417-424. doi: 10.1097/FTD.0b013e318225384f

45. Liu X, Ma Q, Zhao Y, Mu W, Sun X, Cheng Y, et al. Impact of single nucleotide polymorphisms on plasma concentrations of efavirenz and lopinavir/ritonavir in Chinese children infected with the human immunodeficiency virus. Pharmacotherapy. 2017; 37(9): 1073-1080. doi: 10.1002/phar.1988

46. Elens L, Tyteca D, Panin N, Courtoy P, Lison D, Demoulin J-B, et al. Functional defect caused by the 4544G>A SNP in ABCC2: Potential impact for drug cellular disposition. Pharmacogenet Genomics. 2011; 21(12): 884-893. doi: 10.1097/FPC.0b013e32834d672b

47. Chandra P, Brouwer KL. The complexities of hepatic drug transport: Current knowledge and emerging concepts. Pharm Res. 2004; 21(5): 719-735. doi: 10.1023/b:pham.0000026420.79421.8f

48. Briz O, Serrano MA, MacIas RI, Gonzalez-Gallego J, Marin JJ. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J. 2003; 371(Pt 3): 897-905. doi: 10.1042/BJ20030034

49. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics. 2010; 20(2): 112-120. doi: 10.1097/FPC.0b013e328335b02d

50. Kohlrausch FB, de Cássia Estrela R, Barroso PF, SuarezKurtz G. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br J Clin Pharmacol. 2010; 69(1): 95-98. doi: 10.1111/j.1365-2125.2009.03551.x

51. Zhang X, Tierney C, Albrecht M, Demeter LM, Morse G, DiFrancesco R, et al. Discordant associations between SLCO1B1 521T→C and plasma levels of ritonavir-boosted protease inhibitors in AIDS clinical trials group study A5146. Ther Drug Monit. 2013; 35(2): 209-216. doi: 10.1097/FTD.0b013e318280d0ad

52. Mpeta B, Kampira E, Castel S, Mpye KL, Soko ND, Wiesner L, et al. Differences in genetic variants in lopinavir disposition among HIV-infected Bantu Africans. Pharmacogenomics. 2016; 17(7): 679-690. doi: 10.2217/pgs.16.14

53. Dragović G, Dimitrijević B, Kušić J, Soldatović I, Jevtović D, Olagunju A, et al. Influence of SLCO1B1 polymorphisms on lopinavir Ctrough in Serbian HIV/AIDS patients. Br J Clin Pharmacol. 2020; 86(7): 1289-1295. doi: 10.1111/bcp.14230

54. Lubomirov R, di Iulio J, Fayet A, Colombo S, Martinez R, Marzolini C, et al. ADME pharmacogenetics: Investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics. 2010; 20(4): 217-230. doi: 10.1097/FPC.0b013e328336eee4

55. Glass TR, Rotger M, Telenti A, Decosterd L, Csajka C, Bucher HC, et al. Determinants of sustained viral suppression in HIV-infected patients with self-reported poor adherence to antiretroviral therapy. PLoS One. 2012; 7(1): e29186. doi: 10.1371/journal.pone.0029186

56. Prasad B, Evers R, Gupta A, Hop CECA, Salphati L, Shukla S, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: Quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014; 42(1): 78-88. doi: 10.1124/dmd.113.053819

57. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005; 15(7): 513-522. doi: 10.1097/01.fpc.0000170913.73780.5f

58. Tozzi V. Pharmacogenetics of antiretrovirals. Antiviral Res. 2010; 85(1): 190-200. doi: 10.1016/j.antiviral.2009.09.001

59. Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: Considerations for HIV treatment. Pharmacogenomics. 2009; 10(8): 1323-1339. doi: 10.2217/pgs.09.53

60. Berno G, Zaccarelli M, Gori C, Tempestilli M, Antinori A, Perno CF, et al. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: Potential implications for the metabolism of HIV drugs. BMC Med Genet. 2014; 15: 76. doi: 10.1186/1471-2350-15-76

61. Elens L, Yombi JC, Lison D, Wallemacq P, Vandercam B, Haufroid V. Association between ABCC2 polymorphism and lopinavir accumulation in peripheral blood mononuclear cells of HIVinfected patients. Pharmacogenomics. 2009; 10(10): 1589-1597. doi: 10.2217/pgs.09.88

62. Estrela RC, Santoro AB, Barroso PF, Tuyama M, SuarezKurtz G. CYP3A5 genotype has no impact on plasma trough concentrations of lopinavir and ritonavir in HIV-infected subjects. Clin Pharmacol Ther. 2008; 84(2): 205-207. doi: 10.1038/clpt.2008.12

63. Olagunju A, Schipani A, Siccardi M, Egan D, Khoo S, Back D, et al. CYP3A4*22 (c.522-191 C>T; rs35599367) is associated with lopinavir pharmacokinetics in HIV-positive adults. Pharmacogenet Genomics. 2014; 24(9): 459-463. doi: 10.1097/FPC.0000000000000073

64. Stillemans G, Belkhir L, Hesselink DA, Haufroid V, Elens L. Pharmacogenetic associations with cytochrome P450 in antiretroviral therapy: What does the future hold? Expert Opin Drug Metab Toxicol. 2018; 14(6): 601-611. doi: 10.1080/17425255.2018.1478964


Review

For citations:


Sambyalova A.Yu., Bairova T.A., Manaenkova T.L., Rychkova L.V. The role of pharmacogenetics in Efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection. Acta Biomedica Scientifica. 2021;6(6-2):113-124. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-2.12

Views: 745


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)