Time-related OCT-A changes in preclinical retinopathy and their association with systemic factors
https://doi.org/10.29413/ABS.2021-6.6-1.14
Abstract
Background. Optical coherence tomography angiography (OCT-A) is a promising tool for the detection of microvascular impairment at the preclinical stage of diabetic retinopathy (DR). Evaluation of dynamic OCT-A changes and their association with systemic factors can help to reveal early biomarkers of DR progression.
Aim: to evaluate time-related OCT-A changes and their association with systemic factors in type 1 diabetes mellitus (DM1) patients with no apparent DR
Materials and methods. 38 DM1 patients with no apparent DR and 39 healthy volunteers were included in the study. All participants underwent 7-fi eld fundus photography, OCT and OCT-A. We analyzed OCT-A parameters (foveal avascular zone (FAZ) area (mm2), acircularity index (AI), vessel density (VD), skeletonized density (SD)) as well as the results of blood and urea tests.
Results. After one year of observation, AI was significantly higher (р = 0.005) and VD0–300 was signifi cantly lower in superfi cial vascular plexus (SVP, p < 0.0001) and deep capillary plexus (DCP, р = 0.032) in DM1 patients. We have also registered a positive correlation between AI and triglycerides (TG) level (r = 0.627, p = 0.007) as well as a negative correlation between ketones and VD (SVP VD0–300: r = –0.695, p = 0.030; intermediate capillary plexus (ICP, VD0–300: r = –0.551, p = 0.041; DCP, VD0–300: r = –0.704, p = 0.003; SVP, VD300–600: r = –0.853, p = 0.001).
Conclusions. After one year of observation, we have registered an increase in AI level and a decline in VD in SVP and DCP which can be the earliest signs of DR progression. A signifi cant correlation between these parameters and systemic factors indicates their role as potential DR biomarkers.
About the Authors
A. N. StulovaRussian Federation
Postgraduate, Ophthalmology Department
Lomonosova ave. 27/1, Moscow 119991, Russian Federation
N. S. Semenova
Russian Federation
Cand. Sc. (Med.), Associate Professor at the Ophthalmology Department
Lomonosova ave. 27/1, Moscow 119991, Russian Federation
A. V. Zheleznyakova
Russian Federation
Cand. Sc. (Med.), Senior Research Officer
Dmitrya Ulyanova str. 11, Moscow 117036, Russian Federation
V. S. Akopyan
Russian Federation
Dr. Sc. (Med.), Professor, Head of the Ophthalmology Department
Lomonosova ave. 27/1, Moscow 119991, Russian Federation
D. V. Lipatov
Russian Federation
Dr. Sc. (Med.), Professor, Head of the Department of Diabetic Retinopathy
Dmitrya Ulyanova str. 11, Moscow 117036, Russian Federation
Miklukho-Maklaya str. 6, Moscow 117198, Russian Federation
References
1. Barraso M, Alé-Chilet A, Hernández T, Oliva C, Vinagre I, Ortega E, et al. Optical coherence tomography angiography in type 1 diabetes mellitus. Report 1: Diabetic retinopathy. Transl Vis Sci Technol. 2020; 9(10): 34. doi: 10.1167/tvst.9.10.34
2. Dai Y, Zhou H, Chu Z, Zhang Q, Chao JR, Rezaei KA, et al. Microvascular changes in the choriocapillaris of diabetic patients without retinopathy investigated by swept-source OCT angiography. Invest Ophthalmol Vis Sci. 2020; 61(3): 50. doi: 10.1167/iovs.61.3.50
3. Forte R, Haulani H, Jürgens I. Quantative and qualitative analysis of the three capillary plexuses and choriocapillaris in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy: A prospective pilot study. Retina. 2020; 40(2): 333-344. doi: 10.1097/IAE.0000000000002376
4. Inanc M, Tekin K, Kiziltoprak H, Ozalkak S, Doguizi S, Aycan Z. Changes in retinal microcirculation precede the clinical onset of diabetic retinopathy in children with type 1 diabetes mellitus. Am J Ophthalmol. 2019; 207: 37-44. doi: 10.1016/j.ajo.2019.04.011
5. Stulova AN, Semenova NS, Zheleznyakova AV, Akopyan VS, Lipatov DV, Shestakova MV. Early functional and microcirculatory changes in patients with type 1 diabetes mellitus and no apparent diabetic retinopathy. Diabetes Mellitus. 2021; 3(24): 243-250. (In Russ.). doi: 10.14341/DM12532
6. Stulova AN, Semenova NS, Zheleznyakova AV, Akopyan VS, Lipatov DV. OCTA and functional signs of preclinical retinopathy in type 1 diabetes mellitus. Ophthalmic Surg Lasers Imaging Retina. 2021; 52(S1): S30-S34. doi: 10.3928/23258160-20210518-06
7. Neroev VV, Okhotsimskaya TD, Fadeeva VA. An account of retinal microvascular changes in diabetes acquired by OCT angiography. Russian Ophthalmological Journal. 2017; 10(2): 40-45. (In Russ.). doi: 10.21516/2072-0076-2017-10-2-40-45
8. Agra CLDM, Lira RPC, Pinheiro FG, Sá LHSE, Bravo Filho VTF. Optical coherence tomography angiography: microvascular alterations in diabetic eyes without diabetic retinopathy. Arq Bras Oftalmol. 2021; 84(2): 149-157. doi: 10.5935/0004-2749.20210023
9. Niestrata-Ortiz M, Fichna P, Stankiewicz W, Stopa M. Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2019; 257(4): 689-697. doi: 10.1007/s00417-019-04264-8
10. Onoe H, Kitagawa Y, Shimada H, Shinojima A, Aoki M, Urakami T. Foveal avascular zone area analysis in juvenile-onset type 1 diabetes using optical coherence tomography angiography. Jpn J Ophthalmol. 2020; 64(3): 271-277. doi: 10.1007/s10384-020-00726-3
11. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017; 58(1): 190-196. doi: 10.1167/iovs.16-20531
12. Gołębiewska J, Olechowski A, Wysocka-Mincewicz M, Odrobina D, Baszyńska-Wilk M, Groszek A, et al. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS One. 2017; 12(10): e0186479. doi: 10.1371/journal.pone.0186479
13. Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantifi cation of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017; 135(4): 370-376. doi: 10.1001/jamaophthalmol.2017.0080
14. Wysocka-Mincewicz M, Baszyńska-Wilk M, Gołębiewska J, Olechowski A, Byczyńska A, Hautz W, et al. Influence of metabolic parameters and treatment method on OCT angiography results in children with type 1 diabetes. J Diabetes Res. 2020; 2020: 4742952. doi: 10.1155/2020/4742952
15. Lu J, Ma X, Zhou J, Zhang L, Mo Y, Ying L, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care. 2018; 41(11): 2370-2376. doi: 10.2337/dc18-1131
16. Shaw LT, Khanna S, Chun LY, Dimitroyannis RC, Rodriguez SH, Massamba N, et al. Quantitative optical coherence tomography angiography (OCTA) parameters in a black diabetic population and correlations with systemic diseases. Cells. 2021; 10(3): 551. doi: 10.3390/cells10030551
17. Atarshchikov DS, Lipatov DV, Shestakova MV. Nephroretinal syndrome. Diabetes mellitus. 2008; 11(3): 34-37. (In Russ.). doi: 10.14341/2072-0351-5358
18. Klein R, Zinman B, Gardiner R, Suissa S, Donnelly SM, Sinaiko AR, et al. The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients: The Renin-Angiotensin System Study. Diabetes. 2005; 54(2): 527-533. doi: 10.2337/diabetes.54.2.527
19. Ting DSW, Tan GSW, Agrawal R, Yanagi Y, Sie NM, Wong CW, et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017; 135(4): 306-312. doi: 10.1001/jamaophthalmol.2016.5877
20. Lee DH, Yi HC, Bae SH, Cho JH, Choi SW, Kim H. Risk factors for retinal microvascular impairment in type 2 diabetic patients without diabetic retinopathy. PLoS One. 2018; 13(8): e0202103. doi: 10.1371/journal.pone.0202103
Review
For citations:
Stulova A.N., Semenova N.S., Zheleznyakova A.V., Akopyan V.S., Lipatov D.V. Time-related OCT-A changes in preclinical retinopathy and their association with systemic factors. Acta Biomedica Scientifica. 2021;6(6-1):122-127. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-1.14