Preview

Acta Biomedica Scientifica

Advanced search

Modern possibilities and prospects of early diagnosis of stomach cancer

https://doi.org/10.29413/ABS.2021-6.3.12

Abstract

 The review includes 70 articles, most of which have been published for the last 5 years.
The aim of the review: explore the modern possibilities and prospects of early diagnosis of stomach cancer. In 2018 in Russia, the mortality rate within one year after the diagnosis was 47.4%. Leading experts in luminal endoscopy from Japan, where more than 60% cases of stomach cancer are detected at an early stage, recommend using advanced endoscopic equipment for routine diagnostics, which allows enlarging the image, examining the capillaries of the mucosa and taking series of pictures. Artificial intelligence improves accuracy. Gastroscopic study with artificial intelligence compensates errors and limited capabilities of people, and provides greater accuracy. However, this technology is expensive, and esophagogastroduodenoscopy itself is an invasive method and can be used only in a clinical setting. In patients with a detectable lesion, a biopsy should be performed. It is important to obtain a sufficient amount of tissue when collecting material, however, many patients take anticoagulants, and thus sampling of numerous fragments can lead to bleeding. Given the limitations of esophagogastroduodenoscopy with biopsy and the fact that only 12.4% cases of stomach cancer in 2018 in Russia identified on the stage I, the searching of effective diagnostic tools is still relevant. MicroRNAs have been in the «cancer research arena» for over 10 years and are considered biomarkers that can help to differentiate between the patients with normal range, dysplasia and those with cancer. MicroRNA regulates all vital processes of a cell, moreover, they are stable and easily extracted from various biological materials, including tissues, blood, feces, saliva, ascitic fluid and even paraffin blocks. And although microRNAs are only entering clinical practice, the results obtained are encouraging.

About the Authors

A. A. Arkhipova
Differential diagnosis of gastric ulcers and modern possibilities of early cancer detection State Budgetary Healthcare Institution of the Novosibirsk Region «City Clinical Hospital No. 2»
Russian Federation

 Cand. Sc. (Med.), Head of the Endoscopic Department

 Polzunova Str. 21, 630051, Novosibirsk, Russian Federation 



V. V. Anischenko
FSBEI of Higher Education «Novosibirsk State Medical University (NSMU) of the Ministry of Health of the Russian Federation
Russian Federation

 Dr. Sc. (Med.), Professor, Head of the Department of Surgery at the Faculty of Continuing Medical Education

Krasny Prospect 52, 630091, Novosibirsk, Russian Federation 



References

1. Statua of cancer the population of Russia in 2019 ed. Caprina AD, Starinsky VV, Shahzadova АО. Oncology Research Center. 2020; 239. (In Russian)

2. Asaka M, Kato M, Sakamoto N. Roadmap to eliminate gastric cancer with Helicobacter pylori eradication and consecutive surveillance in Japan. J Gastroenterol. 2014; 49 (1): 1–8. doi: 10.1007/s00535-013-0897-8

3. Parsons BN, Ijaz UZ, D’Amore R, Burkitt MD, Eccles R, Lenzi L, et al. Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use. PLoS Pathog. 2017; 2; 13 (11): e1006653. doi: 10.1371/journal.ppat.1006653

4. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007; 121 (11): 2373–80. doi: 10.1002/ijc.23173

5. Jaiswal M, LaRusso NF, Gores GJ. Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol. 2001; 281 (3): 626–34. doi: 10.1152/ajpgi.2001.281.3.G626

6. Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93 (4): 196–219. doi: 10.2183/pjab.93.013

7. Schneider BG, Piazuelo MB, Sicinschi LA, Mera R, Peng DF, Roa JC, et al. Virulence of infecting Helicobacter pylori strains and intensity of mononuclear cell infiltration are associated with levels of DNA hypermethylation in gastric mucosae. Epigenetics. 2013; 8 (11):1153–61. doi: 10.4161/epi.26072

8. Molecular genetic markers of tumors еdited by Kushlinsky NE, Mazurenko NN, Nemtsova MV. RAMS Publishing House. 2016; 612 (In Russian)

9. Woo HD, Park S, Oh K, Kim HJ, Shin HR, Moon HK, et al. Diet and cancer risk in the Korean Population: A Metaanalysis. Asian Pac J Cancer Prev. 2014; 15 (19):8509–19. doi: 10.7314/apjcp.2014.15.19.8509

10. De Luca A, Iaquinto G. Helicobacter pylori and gastric diseases: a dangerous association. Cancer Lett. 2004; 213 (1): 1–10. doi: 10.1016/j.canlet.2004.06.006

11. Shimazu T, Wakai K, Tamakoshi A, Tsuji I, Tanaka K, Matsuo K, et al. Association of vegetable and fruit intake with gastric cancer risk among Japanese: a pooled analysis of four cohort studies. Ann Oncol. 2014; 25 (6):1228–33. doi: 10.1093/annonc/mdu115

12. Zakrevskii VV, Liflyandsky VG. Vegetables and fruits in the prevention and treatment of cancer in the light of evidencebased medicine (part 1). Vestnik SPbSU. Medicine, 2017; 12 (40): 407–418. (In Russian). doi:10.21638/11701/spbu11.2017.409

13. Melsitova IV. Quality and safety of food: BSU. 2014; 183 (In Russian)

14. Gastric Carcinoma: New Insights into Current Management ed Lazar D. Books on Demand. 2013. 306. doi: 10.5772/45896

15. Praud D, Rota M, Pelucchi C., Bertuccio P, Rosso T, Galeone C, et al. Gastric cancer in the stomach cancer pooling (StoP) Project. Eur J Cancer Prev. 2018; 27 (2): 124–13. doi: 10.1097/CEJ.0000000000000290

16. Ma K, Baloch Z, He T, Xia X. Alcohol consumption and gastric cancer risk: a meta-analysis. Med Sci Monit. 2017; 23: 238–246. doi: 10.12659/msm.899423

17. Peleteiro B, Lopes C, Figueiredo C, Lunet N. Salt intake and gastric cancer risk according to Helicobacter pylori infection, smoking, tumour site and histological type. Br J Cancer. 2011; 104 (1): 198–207. doi: 10.1038/sj.bjc.6605993

18. Sonnenberg A. Dietary salt and gastric ulcer. Gut. 1986; 27:1138–42

19. Ge S, Feng X, Shen L, Wei Z, Zhu O, Sun J. Association between habitual dietary salt intake and risk of gastric cancer: a systematic review of observational studies. Gastroenterol Res Prac. 2012; 808120. doi: 10.1155/2012/808120

20. Khomyakov VM, Yermoshina AD, Pirogov SS, Ryabov AB. Stomach cancer risk factors: the modern concept. Ross z gastroenterol gepatol koloproktol. 2017; 27 (6): 78–86. (In Russian) doi: 10.22416/1382-4376-2017-27-6-78-86

21. Ahn HJ, Lee DS. Helicobacter pylori in gastric carcinogenesis. World J Gastrointest Oncol. 2015; 7 (12): 455–465. doi: 10.4251/wjgo.v7.i12.455

22. Koulis A, Buckle A, Boussioutas A. Premalignant lesions and gastric cancer: current understanding. World J Gastrointest Oncol. 2019; 11 (9): 665–678. doi: 10.4251/wjgo.v11.i9.665

23. Graham DY. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World J Gastroenterol. 2014; 20 (18): 5191–5204. doi: 10.3748/wjg.v20.i18.5191

24. Statua of cancer the population of Russia in 2018 ed. Caprina AD, Starinsky VV, Petrova GV. Hertsen PA. Moscow Oncology Research Center. 2018; 236 (In Russian)

25. Zali Н, Rezaei-Tavirani M, Azodi M. Gastric Cancer: prevention, risk factors and treatment. Gastroenterol Hepatol Bed Bench. 2011; 4 (4): 175–185

26. Zheng W, Zhang S, Zhang S, Min L, Wang Y, Xie J, et al. The relationship between tumor necrosis factor-α polymorphisms and gastric cancer risk: An updated meta-analysis. Biomed Rep. 2017; 7 (2):133–142. doi: 10.3892/br.2017.934

27. Zhang X, Wang J, Shao H, Zhu W. Function of tumor necrosis factor alpha before and after mutation in gastric cancer. Saudi J Biol Sci. 2017; 24 (8): 1920–1924. doi:10.1016/j.sjbs.2017.11.040

28. Xu J, Yin Z, Cao S, Gao W, Liu L, Yin Y, et al. Systematic review and meta-analysis on the association between IL-1B polymorphisms and cancer risk. PLoS One. 2013; 8 (5): e63654. doi: 10.1371/journal.pone.0063654

29. Ma J, Wu D, Hu X, Li J, Cao M, Dong W. Associations between cytokine gene polymorphisms and susceptibility to Helicobacter Pylori infection and Helicobacter Pylori related gastric cancer, peptic ulcer disease: a meta-analysis. PLoS One. 2017; 28; 12 (4):e0176463. doi: 10.1371/journal.pone. 0176463

30. Chang YW, Oh CH, Jung-Wook Kim J, Lee JW, Park MJ, Shim JJ, et al. Combination of Helicobacter pylori infection and the interleukin 8–251 T A polymorphism, but not the mannose-binding lectin 2 codon 54 G A polymorphism, might be a risk factor of gastric cancer. BMC Cancer. 2017; 17 (1):388. doi: 10.1186/s12885-017-3378-2

31. Pan XF, Yang SJ, Loh M, Xie Y, Wen YY, Tian Z, et al. Interleukin-10 gene promoter polymorphisms and risk of gastric cancer in a Chinese Population: single nucleotide and haplotype analyses. Asian Pac J Cancer Prev. 2013; 14 (4): 2577–82. doi: 10.7314/apjcp.2013.14.4.2577

32. Ramis IB, Vianna JS, Gonçalves CV, Groll AV, Dellagostin OA, Silva PEA. Polymorphisms of the IL-6, IL-8 and IL-10 genes and the risk of gastric pathology in patients infected with Helicobacter pylori. J Microbiol Immunol Infect. 2017; 50 (2): 153–159. doi: 10.1016/j.jmii.2015.03.002

33. Kim J, Cho YA, Choi IJ, Lee YS, Kim SY, Shin A, et al. Effects of Interleukin-10 polymorphisms, Helicobacter pylori infection, and smoking on the risk of noncardia gastric cancer. PLoS One. 2012; 7 (1): 29643. doi: 10.1371/journal.pone.0029643

34. Lee YL, Kim JH, Park JJ, Youn YH, Park H, Kim JW, et al. The implications of Endoscopic ulcer in early gastric cancer: can we predict clinical behaviors from endoscopy? PLoS One. 2016; 11 (10): 0164339. doi: 10.1371/journal.pone.0164339

35. Wan JJ, Fei SJ, Lv SX, Han ST, Ma XG, Xu DS, et al. Role of gastroscopic biopsy of gastric ulcer margins and healed sites in the diagnosis of early gastric cancer: a clinical controlled study of 513 cases. Oncol Lett. 2018; 16 (4):4211–4218. doi: 10.3892/ol.2018.9156

36. Yao K, Uedo N, Muto M, Ishikawa H. Development of an e-learning system for teaching endoscopists how to diagnose early gastric cancer: basic principles for improving early detection. Gastric Cancer. 2017; 20 (1): 28–38. doi: 10.1007/s10120-016-0680-7

37. Zhou F, Wu L, Huang M, Jin Q, MD, Qin Y, et al. The accuracy of magnifying narrow band imaging (ME-NBI) in distinguishing between cancerous and noncancerous gastric lesions: a meta-analysis. Medicine (Baltimore). 2018; 97 (9): 9780. doi: 10.1097/MD.0000000000009780

38. Hajjar AE, Rey JF. Artificial intelligence in gastrointestinal endoscopy: general overview. Chin Med J (Engl). 2020; 133 (3): 326–334. doi: 10.1097/CM9.0000000000000623

39. Dekker W, Tytgat GN. Diagnostic accuracy of fiberendoscopy in the detection of upper intestinal malignancy. A follow-up analysis. Gastroenterology. 1977; 73 (4 Pt 1): 710–4

40. Kwack WG, Ho WJ, Kim JH, Lee JH, Kim EJ, Kang HW, et al. Understanding the diagnostic yield of current endoscopic biopsy for gastric neoplasm: A prospective single-center analysis based on tumor characteristics stratified by biopsy number and site. Medicine (Baltimore). 2016; 95 (30): e4196. doi: 10.1097/MD.0000000000004196

41. Mikhaleva LM, Fedorov ED, Birukov AE. Endoscopic and morphological prognostic factors of early gastric cancer. Experimental and Clinical Gastroenterology. 2019; (4):78–84. doi: 10.31146/1682–8658-ecg-164-4-78-84. (In Russian)

42. Zhao G, Xue M, Hu Y, Lai S, Chen S, Wang L. How commonly is the diagnosis of gastric low grade dysplasia upgraded following endoscopic resection? A meta-analysis. PLoS One. 2015; 10 (7): e0132699. doi: 10.1371/journal.pone.0132699

43. Mikhaleva LM, Biryukov AE. Morphological and immunohistochemical features of severe gastric dysplasia and early gastric cancer. Arkhiv Patologii. 2017; 79 (4): 22–28 doi: 10.17116/patol201779422–28. (In Russian)

44. Fassan M, Simbolo M, Bria E, Mafficini A, Pilotto S, Capelli P, et al. High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers. Gastric Cancer. 2014; 17 (3): 442–9. doi: 10.1007/s10120-013-0315-1

45. Mahmoudzadeh SH, Heidari Z, Jahantigh M, Narouei M. Immunohistochemical Expression of p53 and Ki-67 Genes in Gastric Cancer and Precancerous Lesions in the Patients with Helicobacter pylori Infection. Gene, Cell & Tissue. 2016; 3 (4). doi: 10.17795/gct-41341

46. Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol. 2018; 24 (30): 3313–3329 doi: 10.3748/wjg.v24.i30.3313

47. Gómez Zuleta MA, Torres KE, Falduto MT, Magnuson SR. Identificación de biomarcadores sanguíneos para la detección de lesiones premalignas y el diagnóstico del cáncer gástrico. Rev Col Gastroenterol. 2017; 32 (1). doi:10.22516/25007440.124

48. Zabaleta J. MicroRNA: A Bridge from H. Pylori infection to gastritis and gastric cancer development. Front Genet. 2012; 3:294. doi: 10.3389/fgene.2012.00294

49. Link A, Schirrmeister W, Langner C, Varbanova M, Bornschein J, Wex T, et al. Differential expression of microRNAs in preneoplastic gastric mucosa. Sci Rep. 2015; 5: 8270. doi: 10.1038/srep08270

50. Cortés-Márquez AC, Mendoza-Elizalde S, ArenasHuertero F, Trillo-Tinoco J, Valencia-Mayoral P, Consuelo-Sánchez A, et al. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect Dis. 2018; 18 (1): 463. doi: 10.1186/s12879-018-3368-2

51. Isomoto H, Matsushima K, Inoue N, Hayashi T, Nakayama T, Kunizaki M, et al. Interweaving microRNAs and proinflammatory cytokines in gastric mucosa with reference to H. Pylori infection. J Clin Immunol. 2012; 32 (2):290–9. doi: 10.1007/s10875-011-9626-3

52. Shiotani A, Uedo N, Iishi H, Murao T, Kanzaki T, Kimura Y, et al. H. pylori eradication did not improve dysregulation of specific oncogenic miRNAs in intestinal metaplastic glands. J Gastroenterol. 2012; 47 (9): 988–98. doi: 10.1007/s00535-012-0562-7

53. Thorns C, Kuba J, Bernard V, Senft A, Szymczak S, Feller AC, et al. Deregulation of a distinct set of microRNAs is associated with transformation of gastritis into MALT lymphoma. Virchows Arch. 2012; 460 (4): 371–7. doi: 10.1007/s00428-012-1215-1

54. Li SL, Zhao JR, Ren XY, Xie JP, Ma QZ, Rong Q. H. Increased expression of matrix metalloproteinase-9 associated with gastric ulcer recurrenc. World J Gastroenterol. 2013; 19 (28): 4590–4595. doi: 10.3748/wjg.v19.i28.4590

55. Li X, Wang L, Li G, Zheng X, Duan C. Expression of miR-204 and MMP-9 in Helicobacter pylori-associated gastric ulcer. Int J Clin Exp Med. 2016;9 (5):7928–7936

56. Posselt G, Crabtree JE, Wessler S. Proteolysis in Helicobacter pylori-induced gastric cancer. Toxins (Basel). 2017; 9 (4): 134. doi: 10.3390/toxins9040134

57. Li T, Pan H, Li R. The dual regulatory role of miR-204 in cancer Tumour Biol. 2016; 37 (9): 11667–11677. doi: 10.1007/s13277-016-5144-5

58. Bordin DS, Byakhov MY, Fedulenkova LV. “Serological biopsy” and screening of gastric cancer. Malignant tumours. 2014; (2):30–36. doi:10.18027/2224-5057-2014-2-30-36. (In Russian)

59. Loong TH, Soon NC, Kosai NR, Naidu J, Rani RA, Hamid NA, et al. Serum pepsinogen and gastrin-17 as potential biomarkers for pre-malignant lesions in the gastric corpus. Biomed Rep. 2017; 7 (5):460–468. doi: 10.3892/br.2017.985

60. Shiotani A, Murao T, Kimura Y, Matsumoto H, Kamada T, Kusunoki H, et al. Identification of serum miRNAs as novel noninvasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer. 2013; 109 (9):2323–30. doi: 10.1038/bjc.2013.596

61. Zeng Z, Wang J, Zhao L, Hu P, Zhang H, Tang X, et al. Potential role of microRNA-21 in the diagnosis of gastric cancer: a meta-analysis. PLoS One. 2013; 8 (9): e73278. doi: 10.1371/journal.pone.0073278

62. Pereira AL, Magalhães L, Moreira FC, Reis-dasMercês L, Vidal AF, Ribeiro-Dos-Santos AM, et al. Epigenetic field cancerization in gastric cancer: microRNAs as promising biomarkers. J Cancer. 2019; 10 (6): 1560–1569. doi: 10.7150/jca.27457

63. Huang S, Wang J, Li J, Luo Q, Zhao M, Zheng L, et al. Serum microRNA expression profile as a diagnostic panel for gastric cancer. Jpn J Clin Oncol. 2016; 46 (9): 811–8. doi: 10.1093/jjco/hyw085

64. Agostini M, Knight RA. MiR-34: from bench to bedside. Oncotarget. 2014; 5 (4):872–81. doi: 10.18632/oncotarget. 1825

65. Deng X, Zheng H, Li D, Xue Y, Wang O, Yan S, et al. MicroRNA-34a regulates proliferation and apoptosis of gastric cancer cells by targeting silent information regulator 1. Exp Ther Med. 2018; 15 (4): 3705–3714. doi: 10.3892/etm.2018.5920

66. Jafari N, Abediankenari S. MicroRNA-34 Dysregulation in Gastric Cancer and Gastric Cancer Stem Cell. Tumour Biol. 2017; 39 (5):1010428317701652. doi.org/10.1177/1010428317701652

67. Titov SE, Anishchenko VV, Poloz TL, Veryaskina YuA, Arkhipova AA, Ustinov SN. Differential Diagnostics of Gastric Cancer and Precancerous Changes of the Gastric Mucosa Using Analysis of Expression of Six Micrornas. Klinicheskaya Laboratornaya Diagnostika. 2020; 65 (2): 131–136. doi: 10.18821/0869-2084-2020-65-2-131-136. (in Russian)

68. Hwang J, Min BH, Jang J, Kang SY, Bae H, Jang SS, et al. MicroRNA expression profiles in gastric carcinogenesis. Scientific Reports. 2018; 8:14393. doi:10.1038/s41598-018-32782-8

69. Demiryas S, Kocazeybek B, Demirci M, Caliskan R, Kepil N, Uysal H. K. et al. Helicobacter pylori-miRNA Interaction in Gastric Cancer Tissues: First Prospective Study From Turkey. New Microbiol. 2019;42 (4):210–220

70. Zhu M, Zhang N, He S, Lui Y, Lu G, et al. MicroRNA-106a Targets TIMP2 to Regulate Invasion and Metastasis of Gastric Cancer. FEBS Lett. 2014; 588 (4): 600–7. doi: 10.1016/j.febslet.2013.12.028


Review

For citations:


Arkhipova A.A., Anischenko V.V. Modern possibilities and prospects of early diagnosis of stomach cancer. Acta Biomedica Scientifica. 2021;6(3):113-125. (In Russ.) https://doi.org/10.29413/ABS.2021-6.3.12

Views: 1127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)