Bioinformational analysis of Yersinia pseudotuberculosis IP32953 CRISPR/cas system
https://doi.org/10.12737/23384
Abstract
About the Authors
N. P. PeretolchinaRussian Federation
Y. P. Dzhioev
Russian Federation
A. Y. Borisenko
Russian Federation
E. A. Voskresenskaya
Russian Federation
A. I. Paramonov
Russian Federation
L. A. Stepanenko
Russian Federation
O. V. Kolbaseeva
Russian Federation
V. I. Zlobin
Russian Federation
References
1. Abby S.S., Néron B., Ménager H., Touchon M., Rocha E.P. (2014). MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PloS one, 9 (10), e110726.
2. Biswas A., Gagnon J.N., Brouns S.J., Fineran P.C., Brown C.M. (2013). CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA biology, 10 (5), 817-827.
3. Bland C., Ramsey T.L., Sabree F., Lowe M., Brown K., Kyrpides N.C., Hugenholtz P. (2007). CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC bioinformatics, 8 (1), 1.
4. Edgar R.C. (2007). PILER-CR: fast and accurate identification of CRISPR repeats. BMC bioinformatics, 8 (1), 1.
5. Eppinger M., Rosovitz M.J., Fricke W.F., Rasko D.A., Kokorina G., Fayolle C., Ravel J. (2007). The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet, 3 (8), e142.
6. Gaj T., Gersbach C.A., Barbas C.F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31 (7), 397-405.
7. Gasiunas G., Sinkunas T., Siksnys V. (2014). Molecular mechanisms of CRISPR-mediated microbial immunity. Cellular and Molecular Life Sciences, 71 (3), 449-465.
8. Grissa I., Vergnaud G., Pourcel C. (2007). CRIS-PRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 35 (2), W52-W57.
9. Hammerl J.A., Freytag B., Lanka E., Appel B., Hertwig S. (2012). The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the self-transmissible plasmid pYE854. Environmental Microbiology Reports, 4 (4), 433-438.
10. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36 (2), W5-W9.
11. Makarova K.S., Haft D.H., Barrangou R., Brouns S.J., Charpentier E., Horvath P., van der Oost J (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9 (6), 467-477.
12. Overbeek R., Begley T., Butler R.M., Choudhuri J.V., Chuang H.Y., Cohoon M., Fonstein M. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research, 33 (17), 5691-5702.
13. Pourcel C., Salvignol G., Vergnaud G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151 (3), 653-663.
14. Rousseau C., Gonnet M., Le Romancer M., Nicolas J. (2009). CRISPI: a CRISPR interactive database. Bioinformatics, 25 (24), 3317-3318.
15. Zhou Y., Liang Y., Lynch K.H., Dennis J.J., Wishart D.S. (2011). PHAST: a fast phage search tool. Nucleic Acids Research, gkr485.
Review
For citations:
Peretolchina N.P., Dzhioev Y.P., Borisenko A.Y., Voskresenskaya E.A., Paramonov A.I., Stepanenko L.A., Kolbaseeva O.V., Zlobin V.I. Bioinformational analysis of Yersinia pseudotuberculosis IP32953 CRISPR/cas system. Acta Biomedica Scientifica. 2016;1(5):64-67. (In Russ.) https://doi.org/10.12737/23384